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Stirling Numbers

We focus here on Stirling numbers which arise in a variety of
combinatorics problems. They are named after James Stirling
(1692-1770), who Iintroduced them in the 18th century. Two
different sets of numbers bear this name: the Stirling numbers of

the first kind and the Stirling numbers of the second kind, for
Integers n and k with 0<k <n, are written as
second kind S(n,k)s{lr:}, first kind m:(_l)”s(n,k),

for the Stirling numbers of the second and first kind, respectively.

The Stirling numbers of the first and second kind can be
understood to be inverses of one-another.

We begin with {S(n,k)}EZO, where s(n,k)z{lr(‘} is a Stirling number

of the second kind.

1- Stirling Numbers of the Second Kind

Def (1). (Partitions of Set)

Let S be a nonempty set, a partition {A,A,A,...,A} of size k, is
called a partition of the set S, if the following conditions are hold:

1-g2AcS V 1<i<k (Inclusion)
2-ANA =9, for 1<i= j<k (Disjoint)
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3-S=AUAU...UA (Exhaustive)
Combinatorial meaning for S(n,k): Let S be a nonempty set. A
set partition of S is a collection of pairwise disjoint non-empty
subsets of S whose unionis S.

For example, let S ={a,b,c}. There are 5 set partitions of S,
namely S ={a,b,c} itself, the set partition consisting of three
subsets, i.e.{{a},{b},{c}}, and the three set partitions consisting of

two subsets, i.e. {{{a}.{b.c}}.{{b}.{a.c}}.{{c}.{ab}}}.
Def (1) (Stirling numbers of the second kind).
A partition of a set [n]={1,2,3,...,n} is an equivalence relation on

. ni.
that set. The equivalence classes are called parts. {k}ls the number

of ways of partitioning the set [n] into k non-empty subsets or
parts, i.e., the Stirling numbers of the second kind S(n,k) (with a

capital "S") “are also called Stirling subset numbers” count the
number of ways to partition a set of n elements into k non-empty
subsets. Equivalently, it is the number of ways that n
distinguishable balls can be placed into k indistinguishable cells,
with no cell empty. By definition S(n,k)=0if k=0or k>n. For

technical reasons we define S(0,0)=1. The following is a table (1)

of values for the Stirling numbers of the second kind s (n,k)= {E}

where 0<k <n and 0<n>10:
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S(n,k):{lr(]}

k 10|1|2 |3 4 5 6 7 8 |9 |10
n

0 110

1 01

2 011

3 0113 1

4 0117 6 1

5 0[1]15 |25 10 1

6 0(1]31 |90 65 15 1

7 01|63 |301 |350 140 21 1

8 011127966 |1701 |1050 |266 28 1

9 0]1255]3025|7770 |6951 |2646 |(462 |36 |1
10 |0 |1 |511|9330 34105 | 42525 (22827 5880|750 (45| 1

Table (1): Stirling numbers of the second kind

For instance, the number 25 in column k =3 and row n=5 iIs given
by 25=7+(3x6), where 7 is the number above and to the left of 25,

6 is the number above 25 and 3 is the column containing the 6.
One style we see stand out from the first rows of this matrix is:

S(n,2)5{2}=2”‘1—1= 2 2

Note that 2"* —2 is the number of non-empty proper subsets of
[n]={12,3,...,n}.

Properties: {n}:l, and {n}:l with {n}:@m.
1 n 0

For n=4:

 for n>2.
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k=1

(1234

For example, Find the value of {

The set {1,2,3,4} can split into two non-empty subsets in the

following ways:

{1,2,31U{4}, {1,2,4}U{3}, {1,3,4}U{2}, {2,3,4} U{1},
{12}U{3,4}, {1,3}U{2,4}, and {1,4}U{2,3}.
On other word, placing the 4 distinguishable balls {a,b,c,d} into 2

Indistinguishable cells, so that no cell empty, can be denote in 7
ways. These are (vertical bars delineate the cells):

labjcd|, |ad|bc|, |ac|bd|, [a|bcd], [blacd|, c|abd|, and |a]bed.

Thus, {4} —7.
2
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Lemma (1) (Recurrence relation)
Stirling numbers of the second kind satisfy the recurrence relation

{n}:k{n_l}Jr{n_l} for 0<k<n. (1)
k k k-1

Proof. To prove recurrence (I) observe that the set partitions of [n]

with exactly k subsets fall into one of two categories; those which
contain the subset {n} and those which do not:

- If the set partition contains {n} (i.e., {n} is one of the subsets),

delete this subset and obtain a one-to- one correspondence with a
set partition of [n—1] consisting of k —1 parts. That is there are

{E _1} ways of decomposing [n]\{n} into k -1 non-empty
subsets.
- If {n} is not a subset of the set partition of [n], this set partition

came by inserting n into one of the k subsets of a set partition of
[n—1]. That is we decompose [n]\{n} into k non-empty subsets in

{” —1} ways. We can place n in any of these k subsets. So, there
K

are {”;1} ways of doing this.

To understand the recurrence (1), observe that a partition of the n
objects into k nonempty subsets either contains the subset {n} or it

does not. The number of ways that {n} is one of the subsets is

given by {”_1

) 1}, since we must partition the remaining n-1 objects
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into the available k —1subsets. The number of ways that {n} is not
one of the subsets (that is, n belongs to a subset containing other

elements) is given by k{”lzl}, since we partition all elements

other than n into k subsets, and then are left with k choices for
Inserting the element n. Summing these two values gives the
desired result.

Lemma (2). (Closed form expression)

Closed form expression for S(n,«) z{n}, IS given by
o
n o n—k
{a}:;(a—kﬂ){a_kﬂ},foraZland, n#o. (11)

Proof. Multiply equation (I), by k!, then let k - «, and n - n-1.

a!{z} = aa!{n;l}Jra(a —1)!{2:1}. (1)

Take equation (1) and let n—n-1 and o — « -1 to obtain

(a_l)!{”j}:(a_1)(a_1)!{Z:i}+(a_1)(a_2)!{”‘2}. )

o a—2

Substitute Equation (2) into (1). This gives us

(a)!{z}:a(a)!{n;l}+a(a—1)(a—1)!{2:i}

+a(a—1)(a—2)!{2:i}. (3)

Now repeat this process. Take equation (1), let n—»n—-2 and
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a — o —2 to obtain

(a- 2)!{2:22} =(a-2)(a- 2)!{2:2}+(a ~2)(e —3)!{2:2}. (4)

Substitute (4) into Equation (3). This gives us

a!{z}=aa!{n;l}m(a—1)(0“1)!{2__i}

+a(a—1)(a—2)(a—2)!{n_3

n-—3
_ _ — |
2}+a(a 1)(a—-2)(a 3)'{05—3}' (5)
After m iterations we find

ol B e 5]
+[ “ j(m+1)!(a—m—l)!{n_m_i}- (6)

m+1 a—m-—
In equation (6) let m=« —1 to obtain

a!{i} - :Z__;(kilj(k +1)(a - k)!{n;l_kk}+ a!{n ) (T _1}. (7)

-1
Aslongas n—-m-1=0, {n } 0, and equation (7) becomes

-5 o
S S

Take Equation (8), divided by «, and simplify to obtain

a_
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{2}:i(a—k+1){ n_kl},forazland,n;ta. 9)

k=1 a_k+

Equation (9), when combined with closed forms for 2 k',
k=0

: : : n :
recursively provides polynomials for { } whenever m Is a
n—m
positive integer.

Facts:

1- Calculate the value of {nn 1}.

Solution. Use equation (9) with « =n-1, we observe that

=Sl =S -0 a0 ()

k=1

2- Calculate the value of {n " 2}.

Solution. Use equation (9) with « =n-2, along with {nn 1} = [gj ;

n-2 n-2

:”2(”‘k+12)( _ L%Ek?(kﬂ):ﬂzkhzkz}

k=1 k=1
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+
4 6

n—1)(n-2)(3n-5)

1
2

[(n—z)z(n—l)z (n—2)(n-1)(2n-3)
(

n

24
Continuing this recursive procedure, we can show that

{ n }:n(n—l)(n—z)z(n—S)2
n—3 48

N n(n—1)(n—2)(n—3)(n—4)(15n3—150n2+485n—502)
{n—4}: 5760
{ N }:n(n—l)(n—2)(n—3)(n—4)2(n—5)2(3n2—23n+38).

n->5 5760

. and

. 4
Example. Find the value of {3}

Solution. Using the above fact, we obtain {g} = (:) = =6.

Example. Find the value of {2}

Solution. Using the above fact, we obtain

5 4 4
from (1), we get { }z( j+3[ j:7+3x6=25.
3 2 3

From, { "l n(n—l)(n—2)(3n—5)’ by putting n=5, we have
n—2] 24
{5\>:5x4x3x(3x5—5):600225.
3] 24 24
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Lemma (3). Closed form expression for {E} IS given by

(& o
Proof. Using the recursion {E}: k{n;1}+{g_1} we get
R NS S A W

(n—m-1) n—2
(k—m)< > +{ }:
| k-m | k-2

(n—m-1] n—L

= (k—m); > —i—{ }
k —L
n

| k-m
J}Es(n,j).

Lemma (4). Recurrence (8) implies the basis definition of Stirling
numbers of the second kind, {T} =S(n,j):

n(X). ) n(X). |INn

Xn:Z[_jj!S(n,j)EZ(_jj!{_}, (10)
i\ J i=o\ J J

whenever n is a nonnegative integer.

Proof. Let {C(n, j)}, , be the coefficient of [j

f—J\ﬁ

M-

—r 3
| I
=

3
o

The following Lemma gives the basis definition of {

X . .
j In the expansion
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Notice that C(0,0)=1and C(n, j)=0if j>n.

By definition we have, x™* = ni[);j j!C(n+1,j). On the other hand
j=0

Implies that

J
C(n+1j)=jC(n,j)+C(n,j-1).

Comparing the coefficient of j!(x

This is precisely the recurrence obeyed by {T}

Since C(0,0)z{g}zl and C(n, j):oz{rj]} if j>n, we conclude

n

thatC(n,j)z{J

} for all nonnegative integers j and n.

Lemma (3) provides easy proofs of the following three identities:
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30 i =) (1)
Zn:(—l)j (H J _1j J'!{r.]}:(—l)n X", (12)

jno(_l)j (ijjzj_l{r;} i (_zln)n ' (13)

Equation (13) is equation (10) with x=-1/2; equation (11) is

equation (10) with x=-1 while equation (12) is equation (10) with
x — —x. If x=1, equation (12) becomes equation (11).

This suggests that we take equation (12) and let x =2 to find that
jzn(;(—l)j (j+1) ] I{T} = jzn(;(—l)j i !{?}+jzn(;(—1)" j'{r;} =(-1)"2". (14)
Use Equation (11) to evaluate the right most sum of Equation (14).

After simplification we obtain the identity

>0 i)}~ [2 1) (15)

j=0 J

Appendices:

Preliminaries: Sample Selection
There are 4 different ways in which a sample of k elements can be
obtained from a set of n distinguishable objects.
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Order Repetitions | The sample is Number of ways to
counts allowed called an choose the sample
n
No No k -combination ‘
Y N k tati (n) n
es 0 -permutation n) =
< (n-k)!
No Yes K -combination n+k-1
with replacement k
Yes Yes K -permutation with |
replacement n

Balls into cells
There are 8 different ways in which n balls can be placed into k cells:

Distinguish | Distinguish | Can cells be | Number of ways to place
the balls? the cells? empty? n balls into k cells
Yes Yes Yes k"
n

Yes Yes No k! y

n n n
Yes No Yes + +...+

1 2 K

n
Yes No No

K
No Yes Yes
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k+n-1
No Yes No n

n-1
No No Yes

k-1
No No No
p,(n) + p,(n) +...+ p, ()

p.(n)

where

{rk‘} . 1S the Stirling number of the second kind,

p.(n): is the number of partitions of the number n into exactly Kk integer parts.

Relations.

Let x be any real number and consider the function f (x)=(x),, we
have

F(x)=(X), =x(X),., =xf (x=1).
But the gamma function I'(x) = [e"t**dt has I'(x+1)=xI(x), as
0

functional equation. Hence when x Is not negative integer we
define (x) =I'(x+1), x=-1-2,...,then we have

(x), =(x)... . =(x) (x=n) __,and the general definitions of the
(x+1)
[(x+1-n)
for which the gamma functions exist.

factorial power is (x) = , for all real values of x and n

Prof. M A El-Shehawey
15



