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Colloid Stability 
A most important physical property of colloidal dispersions is the 

tendency of the particles to aggregate. Encounters between particles 

dispersed in liquid media occur frequently and the stability of dispersion 

is determined by the interaction between the particles during these 

encounters. 

The principal cause of aggregation is the van der Waals attractive forces 

between the particles, which are long-range forces. To counteract these 

and promote stability, equally long-range repulsive forces are required. 

Solvation tends to be too short-range; however, the molecular ordering 

associated with solvation can propagate several molecular diameters into 

the liquid phase and may exert some influence on stability95. The 

principal stabilizing options are electrostatic (i.e. the overlap of similarly 

charged electric double layers) and polymeric. Polymeric and/or 

surfactant additives can influence stability by a variety of mechanisms 

and the overall situation is often very complicated. 

Lyophobic sols 

Ideally, lyophobic sols are stabilized entirely by electric double-layer 

interactions and, as such, present colloid stability at its simplest. 

Critical coagulation concentrations*-Schulze-Hardy rule 

A most notable property of lyophobic sols is their sensitivity to 

coagulation by small amounts of added electrolyte. The added electrolyte 

causes a compression of the diffuse parts of the double layers around the 

particles and may, in addition, exert a specific effect through ion 

adsorption into the Stern layer. The sol coagulates when the range of 

double-layer repulsive interaction is sufficiently reduced to permit 

particles to approach close enough for van der Waals forces to 

predominate. 

Table 8.1 Critical coagulation concentrations (in mmol per dm
3
) for hydrophobic 
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As2S3 (- ve sol ) AgI (- ve sol ) Al2O3 (+ve sol ) 

LiCl                       58 

NaCl                      51 

KCl                       49.5 

KNO3                    50 

K acetate              110 

 

CaCl2                   0.65 

MgCl2                 0.72 

MgSO4                0.81 

 

AlCl3                  0.093 

1/2Al2(SO4)3      0.096  

Al(N03)3           0.095 

LiNO3              165   

NaNO3             140 

KNO3               136 

RbNO3             126 

AgN03             0.01     

 

Ca(N03)2         2.40 

Mg(N03)2        2.60 

Pb(N03)2              2.43 

 

Al(N03)3          0.067 

La(N03)3         0.069 

Ce(N03)3       0.690 

NaCl                 43.5 

KCl                   46 

KNO3                60 

 

 

 

K2SO4              0.30 

K2Cr207            0.63 

K2 oxalate        0.69 

 

K3[Fe(CN)6]    0.08 

The critical coagulation concentration of an indifferent (inert) electrolyte 

(i.e. the concentration of the electrolyte which is just sufficient to 

coagulate a lyophobic sol to an arbitrarily defined extent in an arbitrarily 

chosen time) shows considerable dependence upon the charge number of 

its counter-ions. In contrast, it is practically independent of the specific 

character of the various ions, the charge number of the co-ions and the 

concentration of the sol, and only moderately dependent on the nature of 

the sol. These generalizations are illustrated in Table 8.1, and are known 

as the Schulze-Hardy rule 

The Deryagin-Landau and Verwey-Overbeek theory 

Deryagin and Landau and Verwey and Overbeek independently 

developed a quantitative theory in which the stability of lyophobic sols, 

especially in relation to added electrolyte, is treated in terms of the energy 

changes which take place when particles approach one another. The 

theory involves estimations of the energy due to the overlap of electric 

double layers (usually repulsion) and the Londonvan der Waals energy 

(usually attraction) in terms of Interparticle distance, and their summation 
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to give the total interaction energy in terms of interparticle distance. 

Colloid stability is then interpreted in terms of the nature of the 

interaction energy-distance curve. Theoretical calculations have been 

made for the interactions (a) between two parallel charged plates of 

infinite area and thickness, and (b) between two charged spheres. The 

calculations for the interaction between flat plates are relevant to the 

stability of thin soap films, and have been related with a reasonable 

measure of success to experimental studies in this field. The calculations 

for the interaction between spheres are relevant to the stability of 

dispersions and will be outlined. In fact, the conclusions arising from 

both theoretical treatments are broadly similar. 

Double-layer interaction energies  

The calculation of the interaction energy, VR, which results from the 

overlapping of the diffuse parts of the electric double layers around two 

spherical particles (as described by Gouy-Chapman theory) is complex. 

No exact analytical expression can be given and recourse must be had to 

numerical solutions or to various approximations. 

If it is assumed that ion adsorption equilibrium is maintained as two 

charged particles approach each other and their double layers overlap, 

two well-defined situations can be recognized. If the surface charge is the 

result of the adsorption of potential-determining ions, the surface 

potential remains constant and the surface charge density adjusts 

accordingly; but if the surface charge is the result of ionization, the 

surface charge density remains constant and the surface potential adjusts 

accordingly. At large interparticle separations the difference between 

constant potential and constant charge interactions will be minimal. 

Overbeek has considered this problem and concluded that the rate of 

double-layer overlap in a typical Brownian motion encounter between 

particles is too fast for adsorption equilibrium to be maintained and that 
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the true situation will, in general, lie somewhere between constant 

potential and constant charge. 

For the case of two spherical particles of radii a1 and a2, Stern potentials, 

1d  and 2d , and a shortest distance, H, between their Stern layers, 

Healy and co-workers have derived the following expressions for 

constant-potential, 
RV  and constant-charge, 

RV , double-layer interactions. 

The low-potential form of the Poisson- Boltzmann distribution is 

assumed to hold and 1a  and 2a  are assumed to be large compared with 

unity: 
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Where   is the permittivity of the dispersion medium and    is interface 

thickness  

Table 8.2 shows the signs of VR that accord with equations (8.1) and (8.2) 

for different homo-coagulation and hetero-coagulation situations. (N.B. 

Attraction is negative and repulsion positive.) For equal spheres, with at 

a1 = a2 = a and 1d  = 2d  = d , equations (1) and (2) reduce to 

)3()1ln(2 2 H
dR eaV     And )4()1ln(2 2 H

dR eaV     

For small electric double layer overlap, such that He  <<1, these 

expressions both reduce to 

)5(2 2 H
dR eaV    

Tab2 8.2 Predicted signs of *
RV  

Situation                                         

RV                              


RV        
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(a) 021  dd                              +ve                                 +ve 

(b) 21 dd and of like sign               +ve at large H                +ve 

but unequal magnitude                        -ve at small H 

(c) 21 dd and  of opposite              - ve                                 -ve at large H 

 Sign                                                                                           +ve at large H 

(d) 021 dd or                             - ve                                 +ve 

 

Another approximate expression for VR is that given by Reerink and 

Overbeek. The Debye-Hiickel low-potential approximation is not made, 

but the interparticle distance is considered to be sufficiently large (i.e. 

He  << 1) for the potential at any point between the particles to be given 

by the sum of the individual potentials at that point for each particle in the 

absence of the other. For unequal spherical particles, 
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If, Tze d  2/ <1 equation (7) reduces to (5). 

[Note that: The symbols VR and VA are those traditionally used to 

represent electric double layer and van der Waals interactions, 

respectively. The subscripts, R and A, reflect the usual, but not universal, 

repulsive and attractive nature of these interactions,] 

So far, only non-specific ion adsorption in the diffuse part of the electric 

double layer has been considered. The broad prediction is that VR should 



 6 

decrease in an approximately exponential fashion with increasing H and 

that the range of VR should be decreased by increasing  (i.e. by 

increasing electrolyte concentration and/or counter-ion charge number). 

Specific effects may also influence VR. Counter-ion adsorption in the 

Stern layer may cause a reversal of charge so that VR for a pair of 

identical particles will be zero at the reversal of charge concentration and 

positive (repulsion) at both below and above this concentration. In 

contrast to the effect of electrolyte on the diffuse part of the electric 

double layer, the amount of added electrolyte required to produce such a 

specific effect will depend on the total surface area of the particles, The 

nature of the electric double layer (and of VR) may also be influenced by 

ion hydrolysis and/or complexation reactions. 

An interesting example of electrostatic attraction of oppositely charged 

surfaces is that exhibited by kaolinite clay particles. The faces of the 

plate-like particles tend to be negatively charged and the edges positively 

charged. This can be demonstrated by introducing negatively charged 

colloidal gold particles into the clay suspension, then subsequently taking 

an electron micrograph, which shows the small gold particles adhering to 

the edges (but not to the faces) of the clay platelets. Edge-to-face 

attraction between the clay platelets can lead to the formation of a 'card-

house' structure with a relatively low particle density. 

Van der Waals forces between colloidal particles 

The forces of attraction between neutral, chemically saturated molecules, 

postulated by van der Waals to explain non-ideal gas behavior, also 

originate from electrical interactions. Three types of such intermolecular 

attraction are recognized: 

1. Two molecules with permanent dipoles mutually orientate each other 

in such a way that, on average, attraction results. 
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2. Dipolar molecules induce dipoles in other molecules so that attraction 

results. 

3. Attractive forces are also operative between non-polar molecules, as is 

evident from the liquefaction of hydrogen, helium, etc. These 

universal attractive forces (known as dispersion forces) were first 

explained by London (1930) and are due to the polarization of one 

molecule by fluctuations in the charge distribution in a second 

molecule, and vice versa. 

With the exception of highly polar materials, London dispersion forces 

account for nearly all of the van der Waals attraction which is operative. 

The London attractive energy between two molecules is very short-range, 

varying inversely with the sixth power of the intermolecular distance. For 

an assembly of molecules, dispersion forces are, to a first approximation, 

additive and the van der Waals interaction energy between two particles 

can be computed by summing the attractions between all interparticle 

molecule pairs. 

The results of such summations predict that the London interaction 

energy between collections of molecules (e.g. between colloidal particles) 

decays much less rapidly than that between individual molecules. 

For the case of two spherical particles of radii a1 and a2, separated in 

vacuum by a shortest distance H, Hamaker derived the following 

expression for the London dispersion interaction energy, VA: 
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If a small interparticle separation is assumed, such that H << a (i.e. x < < 

1), this rather awkward equation simplifies to 

)10(
122
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12 H

Aa

x

A
VA   

Values of VA calculated from this equation will be overestimated on 

account of the above approximation. 

Values of VA calculated from any of the above equations will be 

overestimated at large distances (H > 10 nm) owing to a neglect of the 

finite time required for propagation of electromagnetic radiation between 

the particles, the result of which is a weakening of VA. In most practical 

situations relating to colloid stability this retardation effect is not likely to 

be important. The major problem in calculating the van der Waals 

interaction between colloidal particles is that of evaluating the Hamaker 

constant, A. Two methods are available. 

The first of these methods is the London-Hamaker microscopic 

approach, which has already been mentioned. In it Hamaker constants are 

evaluated from the individual atomic polarizability and the atomic 

densities of the materials involved. The total interaction is assumed to be 

the sum of the interactions between all interparticle atom pairs and is 

assumed to centre on a single oscillation frequency. These assumptions 

are essentially incorrect. 

The influence of neighboring atoms on the interaction of a given pair of 

atoms is ignored, van der Waals interaction energies calculated in accord 

with the microscopic approach are likely to be in error but the error 

involved is not likely to be so great as to prejudice general conclusions 

concerning colloid stability. 
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The other method is the macroscopic approach of Lifshiftz in which the 

interacting particles and the intervening medium are treated as continuous 

phases. The calculations are complex, and require the availability of bulk 

optical/dielectric properties of the interacting materials over a sufficiently 

wide frequency range. 

The values of A calculated by microscopic and by macroscopic methods 

tend to be similar in the non-retarded range. The macroscopic approach 

predicts a smaller retardation effect (i.e. better applicability of equations 

8-10 for relatively large values of H) than the microscopic approach. 

Hamaker constants for single materials usually vary between about 10-
20

 j 

and (10
-19

 j some examples are given in Table 8.3. Where a range of 

values is quoted for a given material, this reflects different methods of 

calculation within the basic microscopic or macroscopic method. 

The presence of a liquid dispersion medium, rather than a vacuum (or 

air), between the particles (as considered so far) notably lowers the van 

der Waals interaction energy. The constant A in equations (8 -10) must be 

replaced by an effective Hamaker constant. 

 

Consider the interaction between two particles, 1 and 2, in a dispersion 

medium, 3. When the particles are far apart (Figure 8. la), the interactions 

are particle-dispersion medium interactions, with Hamaker constants A13 

and A23. If particle 2 is brought close to particle 1 (Figure 8.1b), 

dispersion medium must be displaced to the position originally occupied 

by particle 2 and the above interactions are replaced by particle-particle 

and dispersion medium-dispersion medium interactions, with Hamaker 
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constants A12 and A33. The effective Hamaker constant is, therefore, given 

by               )11(23133321123 AAAAA   

If the attractions between unlike phases are taken to be the geometric 

mean of the attractions of each phase to itself  

2/1
332223

2/1
331113

2/1
221112 )(,)(,)( xAAAxAAAxAAA   then equation 

(11) becomes )12())(( 2/1
33

2/1
22

2/1
33

2/1
11123 AAAAA   

If the two particles are of the same material, this expression becomes 

)13()( 22/1
33

2/1
11123 AAA   

 Giving values of A13l for hydrosols of up to about 10
-I9

 J 

A 132 will be positive (interparticle attraction) where A11 and A 22 are either 

both greater than or both less than A33. However, in the unusual situation 

where A33 has a value intermediate between those of A11 and A22, then A123 

is negative - i.e. a repulsive van der Waals interaction between the 

particles is predicted, 

A131 for the interaction of particles of the same material is always positive 

- i.e. the van der Waals interaction energy is always one of attraction. 

This interaction will be weakest when the particles and the dispersion 

medium are chemically similar, since A11 and A33 will be of similar 

magnitude and the value of A131 will therefore, be low. 

Table 8.3 Values of Hamaker constants 

Material                                A11 (microscopic)                                  A11 (macroscopic) 

                                                  10
-20    

J                                                     10
-20    

J 

Water                                        3.3 -6.4                                                   3.0-6.1 

Ionic crystals                            15.8-41.8                                                 5.8-11.8 

Metals                                      7.6-15.9                                                    22.1 

Silica                                        50                                                             8.6                                     

Quartz                                      11.0- 18.6                                                 8.0-8.8                                 

Hydrocarbons                          4.6-10                                                       6.3                 

Polystyrene                              6.2-16.8                                                    5.6-6.4 
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