DECISION FUNCTIONS

BASIC CONCEPTS

We start with a simple example. Let C, and C, be two pattern classes,
samples of which are shown in Fig. 2.1.1. Each sample pattern is a vector
x=(x,x,)’ in the x,—x, plane, denoted by either e (xeC,) or
o(xe C,).




The two populations can be clearly separated by a straight line. Let
d(x) =0 be such a line. Then, its coefficients given by

d(x)=wx, +wyx, +w, =0 (2.1.1)

can be rearranged such that d(x)>0 for all x e C; and d(x) <0 for all
x € C,. For any incoming x known a priori to belong to either C, or C,,
we can calculate d(x) and decide that x e C, if d(x)>0 and xeC, if
d(x)<0. Thus, d(x) is alinear decision function of (.

This particular example can be easily extended to the case of two
pattern classes C,C, in the n-dimensional Emwclidean vector space R".
Assume the classes to be geometrically separated by the hyperplane

d(x)=wx, +wx,+...+wx +w .  =wix+w, =0 (2.1.2)



where w, = (w,,w,,...,w,)" is the weight vector, such that

d(x)>0, for xe(

(2.1.3)
d(x)<0, for xe(,
Then, for an arbitrary incoming x at C, U C,, we can decide
d(x)>0, => xe(
(2.1.4)

d(x)>0,=>xe(,

Usually, x and w, of Eq. (2.1.2) are replaced by the augmented pattern
and weight vectors x =(x,,x,,...,x,,1)" and w=(w,w,,...,w, )" for
which one gets

d(x)=w'x (2.1.5)



A decision function may not be linear. In Fig. 2.1.2 the two pattern classes
are separated by the circumference d(x)=1- xf — x§ =0. Since d(x)>0
for all x e C; and d(x)<O0 for all xe C,,d(x) is a nonlinear decision

function of ;. The membership of an incoming x in either C, or C,
will be decided by using Eq. (2.1.4).
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In general there are m pattern classes {C,,C,,...,C,} in R" and a
decision function is defined as follows.

m  Definition 2.1.1 Let C,,C,,...,C,_ be m pattern classes in R". If a

surface d(x) =0, x e R" separates between some C, and the remaining
C, j#i, 1.e.

d(x)>0, xeC

(2.1.6)
d(x)<0, xe Cj, J#1



then d(x) will be called a decision function of C..

Naturally, the domain of definition for d(x) must include the union of
C.,GC,,....C .

For the sake of simplicity, pattern classes would be often denoted in
figures by the boundaries of the regions where the given sample patterns
fall.



m Example 2.1.1 Let C, and C, be the pattern classes of Fig. 2.1.3.

The parabola x; —x,=0 is a decision function of C,. Usually, the
number of legitimate decision functions is infinite. In this particular case,
d’(x)=x, — x, is also a possible decision function.
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m Example 2.1.2 Let C,C,,C, be the pattern classes of Fig. 2.1.4.

The parabola d,(x)=1-x’—x,=0 is a decision function for C,, while
d,(x)=6x,+7x,—21 is a decision function of C,. Unlike in the
previous example, a linear decision function for C; does not exist.
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2.2 LINEAR DECISION FUNCTIONS

Given m pattern classes C,,C,,...,C_in R" we distinguish between two

CaSEes.

I. Absolute separation

If each pattern class C, has a linear decision function d;(x), 1.e.

>0, xeC(,

iy T ae —
d,(x)=w;x= { <0, otherwise (2.2.1)



m Example 2.2.1 Consider the pattern classes C,,C,,C, in Fig. 2.2.1.
The straight lines d (x)=2-x,=0, d,(x)=—x,+x,—-2=0 and
d,(x)=x,+x,—-4=0 provide decision functions for C,C,,C,
respectively , i.e. C;,C, and C, are absolutely separable.
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m Definition 2.2.1 (decision region): Let the pattern classes {C,} 7, be

absolutely separable by the linear decision functions
d,(x),d,(x),...,d_(x) respectively. Then the vector sets

D!-={xld£.(x)>0; d;(x) <0, j#i}, 1<i<m (2.2.2)

are called the decision regions of C,,C,,...,C_ respectively.

Note that each pattern class C, i1s a subset of its associated decision
region D, and that decision regions depend directly on the particular choice

of decision functions.



m Example 2.2.2 The decision regions associated with the previous
example are the shaded are as in Fig. 2.2.2.
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m Example 2.2.3 The pattern classes C,,C,,C;,C, in Fig. 2.2.3 are

such that no linear decision function exists for C,. However, any three of
the four classes are absolutely separable.
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m Figure 2.2.3 A case with no absolute separation.



II. Pairwise separation

In the absence of absolute separation, partial separation between
pattern classes, can still occur if each pair of them can be separated by a
linear decision function. In this case the pattern classes are said to be
pairwise separable. Each pair of classes C, and C, are associated with a

linear decision function d;; such that

d;(x)>0 forall xe(

(2.2.3)
d;(x)<0 forall xeC,
Consequently, for all x € C; we have
d;(x)>0 forall j#i (2.2.4)

Also, forall i and j: d,(x)=—d (x).



m Example 2.24 Let C,C, and C, be the pattern classes shown in
Fig. 2.2.4. The linear decision functions d,(x)=x,—35, d,(x)=—x, +3
and d,(x)=x,—2x, +2 separate between the pairs (C,,C,), (C,,C,) and
(C,, C;) respectively. Therefore C,C, and C, are pairwise separable.
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m Definition 2.2.2  (decision region). Let the pattern classes
C.,C,,...,C_ be pairwise separable by the linear decision functions

{dg (x)} " Then the vector sets

ij=1°

D, = {x1d,(x)>0, j#i}, 1<i<m (2.2.5)

!

are called the decision regions of C,C,,...,C, respectively.



m Example 2.2.5 The decision regions of C,,C,,C, in the previous
example are shown in Fig. 2.25. In order to get D, we take
d, (x)=-d,(x), and to obtain D, we use d,(x)=—-d;;(x) and
d,(x)=—d,(x).
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m  Figure 2.2.5 Decision regions for Example 2.2.5.



A common particular case of pairwise separation occurs when linear
functions d,(x), d,(x),...,d, (x) suchthatforall xe C,, 1<i<m

d(x)>d (x) forall j#i (2.2.6)

exist. It is easily seen that by defining d,(x)=d,(x)-d,(x) for
1<i, j <m, we obtain a case of pairwise separation. However, the union

of the decision regions is now the whole space, i.e. no ambiguous region
exists. Indeed, for any incoming pattern x we can find { for which

d(x)=max[d;(x)], IS j<m (2.2.7)

and then classify x as a member of C,. If the maximum is achieved for

several i's we choose (for example) the smallest.

If Eq. (2.2.6) holds, there is a simple geometric interpretation to the
empty ambiguous region: The straight lines d,,(x), dy(x), d;;(x),

intersect at one point. Indeed, if d,(x)—d,(x)=0 and d,(x)—d;(x)=0
then clearly d,(x)—d,(x) =0 as well.



