GENERALIZED DECISION FUNCTIONS

Classes which do not share a single pattern may always be separated.
However, decision boundaries which separate between classes, may not
always be linear (see Fig. 2.1.2). The complexity of these boundaries may
sometimes request the use of highly nonlinear surfaces. A popular
approach to generalize the concept of linear decision functions is to
consider a generalized decision function defined as

dix)=wf (x)+...+w, fy(x)+wy, (2.3.1)



where f,(x), 1<i< N are scalar functions of the pattern x, x € R".
Introducing f,,,(x)=1 we get

N+1

d(x)= Zwf(x)=w'x (23.2)
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The representation of d(x) by Egs. (2.3.2) and (2.3.3) implies that any
decision function defined by Eq. (2.3.1) can be treated as linear, provided

that we first transform all the original patterns x into x by calculating
fi(x), 1<i< N for every individual x. Although d(x) is linear in the

(N+1) — dimensional space whose dimension N +1 is usually
considerably greater than n, it certainly maintains its nonlinearity
characteristics in R".



As expected, the most commonly used generalized decision function is
d(x) for which f,(x), 1<i< N are polynomials. If these functions are

all linear in R”, then d(x) can be rewritten as
dix)=(w)"x (2.3.4)

where w is a new weight vector, which can be calculated from the
original w and the original linear f;(x), 1<i< N in Eq. (2.3.1). The

expression in Eq. (2.3.4) is identical to that in Eq. (2.1.2) from the
previous section.



Let us now consider quadratic decision functipns. For 2-dimensional
patterns (i.e. n=2), the most general decision function is

d(X) =wx, +W,x,X, + W, X2 + W, X, + WX, +w, (2.3.5)

T
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ie. w=(w,w,,....,w.) and x =(x;,xx,,%,%,X,,1)’ . For patterns

x € R" the most general quadratic decision function is given by
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_ 2
dX)=2wx + X 2 WyXX  IWE W o g6

i=1 =i+l
The number of terms at the right-hand side of Eq. (2.3.6) is

n(n—1) (n+1)(n+2) (2.3.7)
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This is the total number of weights which are the free parameters of the

problem. If for example n=3, the vector x is 10-dimensional. For
n =10 we already have a considerably large N =65.

In the case of polynomial decision functions of order #, a typical
f.(x) 1In Eq. (2.3.1) 1s given by

fi(x)=x" x? ... x" (2.3.8)

l m



where 1<4,i,,...,i, <n and e, 1<i<m is 0 or 1. It is clearly a

polynomial with a degree between 0 and m. To avoid repetitions we
request 1, <i, < ...<[ .

# Theorem 2.3.1. let d"(x) denote the most general polynomial
decision function of order m . Then

dm(x) — 2 2"' 2 wi1i2...fmxf1xfz "'xim +dm"l(x) (239)

b=l fy=h  i,=i,,

where d°(x)=w__, .

The proof using mathematical induction is straightforward.



m Example 2.3.1 Let n=3 and m=2. Then
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2
d™(x)=3, 2, W, X, X, +WX + WX, + WX, + W,

il =] i2=i1
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m Example2.3.2 let n=2 and m=3. Then
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d3(x): PIEDINDY Wi i, i, X +d*(x)

El =] iz =i1 i3 =i2
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= WX WX X, WX X, W x, +d T (x)
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d*(x)=3, > w,xx, +d (x)

il =1 fz =il
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The number of terms needed to represent a general quadratic decision
(n+1) (n+2)

2
dimension. It can be shown, that in the case of order m , this number is

function is where n 1s the original patterns space’s

_ + __(n+m)! .
M (n,m) "‘(n mm] ~ im) (2.3.10)



2.4 GEOMETRICAL DISCUSSION

Since linear decision functions play a significant role in pattern
recognition, it is essential to provide a complete geometrical interpretation
of their properties. Such an interpretation which includes the concepts of
hyperplanes and dichotomies is given below.

2.4.1 Hyperplanes

Let R" be the original patterns’ space and consider a two-class or a
multiclass problem. A linear decision function which separates one class
from another, is determined by an equation such as

d(x)=wx +wyx,+...+w x +w_ ;=0 (2.4.1)



which defines a [inear decision boundary. The linear decision function
itself, 1s the left-hand side of Eq. (2.4.1). For n=2, the linear decision
boundary is a straight line. It is a plane for n =3 and a hyperplane for
n>3. The vector form of Eq. (2.4.1) is

dx)=w)x +w =0 (2.4.2)

where x =(x1,x2,...,xn)T and w, :(wl,wz,...,wn)T.



m Figure 2.4.1 Basic properties of hyperplane.

Consider now the hyperplane H of Eq. (2.4.2) as shown in Fig. 2.4.1.
Let n be a unit normal vector at some point P of H , pointing to its

positive side. Let y _oP and let x :@ denote any arbitrary point on
the hyperplane. Then, the equation of the hyperplane can be rewritten as

T T
n-QP=n"-(x—y)=0 (2.4.3)
or as

nx=—-n'y (2.4.4)



To compare with Eq. (2.4.2) we normalize the previous equation and
divide it by

"woll =W} +w, +.. +w>)"?

to get

T
W, X W

- n+tl

ol Tl (2.4.5)

Since Eqs. (2.4.4) and (2.4.5) represent the same hyperplane and since n
and w, /J woj are umit vectors, we must have either n=w/ ”w(,” or

n =—-wO/|w0|. But n was chosen to point to the positive side of the

hyperplane, implying



w, (y+n)+w_,>0 (2.4.6)
and since wyy+w =0 we get wln>0. Therefore

LYo
“Wo“ (2.4.7)
and consequently, by virtue of Egs. (2.4.4) and (2.4.5)
Tg, — __wn+1
ny= I (2.4.8)
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The quantity |n” y| measures the normal distance I between the origin
q Y Yy 0 g

and the hyperplane H . Thus

Wn+l

o

D, = (2.4.9)



The distance between an arbitrary point R, associated to a vector z, from
the hyperplane, is

D,=ln"(y-2)| = [n"(z-y) (2.4.10)
and by applying Eqgs. (2.4.7) and (2.4.8) we get

WgZ T Wn+1
(2.4.11)
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In the particular case w,,, =0, the hyperplane H passes through the
origin, since D, =0.



m Example 2.4.1 Consider the decision boundary

3x,+4x,—-5=0

in R*. Here “woﬂ =(3’+4%)"” =5 and the normal unit vector pointing at

T
the positive side of the straight line is n=w, /"w(,”:(2 i) . The

55
distance of a pattern located at (1,2)" from the decision boundary is

(314) (112 r— 5
D(I,Z) = ) =
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3+8-5
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a Example 2.4.2 Consider a two-class pattern classification of a
given 3-D pattern set, using the plane

2x,— X, +2x,—7=0

as a linear decision boundary. If patterns whose normal distance from the
plane is less than 0.01 are excluded, one should eliminate all the patterns
(¥,>¥,,¥;) for which

2y, =y, +2y, -7

"wou

:\23’1‘3’2”3’3‘7 <0.01

If a pattern is located at (0.51,0,3), it is excluded since

=——<0.01
3

‘2-0.51—0+2~3—7~ 0.02
3



Dichotomies

s Definition 2.4.1 An m-—pattern set in R" is said to be regularly
distributed, if none of its (n+1)—pattern subsets i1s located on a

hyperplane in R".

m Theorem 2.4.1 Given a regularly distributed m — pattern set in R",
the number of its linear dichotomies is

22("1;1), m>n

2" , m<n (2.4.13)

D(m,n) =+




Let us consider a regularly distributed m — pattern set and generalized
decision functions which transform the original n— dimensional patterns
into N —dimensional ones. The number of linear dichotomies that can be
obtained is D(m,N), compared with the total number of two-class

groupings which is 2" . Thus, the probability for a random dichotomy (i.e.
a random two-class grouping of the pattern set) to be linearly
implementable is

( N
g (mi—l]’ s N
D(m,N) _ | =0

m,N) =
p(m,N) X 1

. m<N (2.4.14)

Consequently, if the number of patterns does not exceed the new
dimensionality of the pattern space, each two disjoint pattern classes
whose union is the whole pattern set, are linearly separable in the
N - dimensional space.



m Example 2.4.5 Consider the four 2-D patterns in Fig. 2.4.4. There is
no way that the classes {xl,x3}, {xz,x4} will be linearly separated.

However, by using quadratic decision functions and boundaries, we get

N=5 and since m=4<5 linear separation in R’ is possible. In the
original space, we simply use a quadratic parabola.

m Figure 2.4.4 A 2-D problem linearly separable only in R’.



