
Nested Functions

What Are Nested Functions?

A nested function is a function that is completely contained within a parent function.

Any function in a program file can include a nested function.

For example, this function named parent contains a nested function named nestedfx:

function parent
disp('This is the parent function')
nestedfx

 function nestedfx
 disp('This is the nested function')
 end

end

The primary difference between nested functions and other types of functions is that

they can access and modify variables that are defined in their parent functions. As a

result:

• Nested functions can use variables that are not explicitly passed as input arguments.

• In a parent function, you can create a handle to a nested function that contains the data

necessary to run the nested function.

•

Requirements for Nested Functions

• Typically, functions do not require an end statement. However, to nest any function in

a program file, all functions in that file must use an end statement.

• You cannot define a nested function inside any of the MATLAB® program control

statements, such as if/elseif/else, switch/case, for, while, or try/catch.

• You must call a nested function either directly by name (without using feval), or

using a function handle that you created using the @ operator (and not str2func).

• All of the variables in nested functions or the functions that contain them must be

explicitly defined. That is, you cannot call a function or script that assigns values to

variables unless those variables already exist in the function workspace. (For more

information, see Variables in Nested and Anonymous Functions.)

Sharing Variables Between Parent and Nested Functions

In general, variables in one function workspace are not available to other functions.

However, nested functions can access and modify variables in the workspaces of the

functions that contain them.

This means that both a nested function and a function that contains it can modify the

same variable without passing that variable as an argument. For example, in each of

these functions, main1 and main2, both the main function and the nested function can

access variable x:

file:///C:/Program%20Files/MATLAB/R2018a/help/matlab/matlab_prog/variables-in-nested-and-anonymous-functions.html

function main1
x = 5;
nestfun1

 function nestfun1
 x = x + 1;
 end

end

function main2
nestfun2

 function nestfun2
 x = 5;
 end

x = x + 1;
end

When parent functions do not use a given variable, the variable remains local to the

nested function. For example, in this function named main, the two nested functions

have their own versions of x that cannot interact with each other:

function main
 nestedfun1
 nestedfun2

 function nestedfun1
 x = 1;
 end

 function nestedfun2
 x = 2;
 end
end

Functions that return output arguments have variables for the outputs in their

workspace. However, parent functions only have variables for the output of nested

functions if they explicitly request them. For example, this

function parentfun does not have variable y in its workspace:

function parentfun
x = 5;
nestfun;

 function y = nestfun
 y = x + 1;
 end

end

If you modify the code as follows, variable z is in the workspace of parentfun:

function parentfun
x = 5;
z = nestfun;

 function y = nestfun
 y = x + 1;
 end

end

Using Handles to Store Function Parameters

Nested functions can use variables from three sources:

• Input arguments

• Variables defined within the nested function

• Variables defined in a parent function, also called externally scoped variables

When you create a function handle for a nested function, that handle stores not only

the name of the function, but also the values of externally scoped variables.

For example, create a function in a file named makeParabola.m. This function accepts

several polynomial coefficients, and returns a handle to a nested function that

calculates the value of that polynomial.

function p = makeParabola(a,b,c)
p = @parabola;

 function y = parabola(x)
 y = a*x.^2 + b*x + c;
 end

end

The makeParabola function returns a handle to the parabola function that includes

values for coefficients a, b, and c.

At the command line, call the makeParabola function with coefficient values

of 1.3, .2, and 30. Use the returned function handle p to evaluate the polynomial at a

particular point:

p = makeParabola(1.3,.2,30);

X = 25;
Y = p(X)
Y =
 847.5000

Many MATLAB functions accept function handle inputs to evaluate functions over a

range of values. For example, plot the parabolic equation from -25 to +25:

fplot(p,[-25,25])

You can create multiple handles to the parabola function that each use different

polynomial coefficients:

firstp = makeParabola(0.8,1.6,32);
secondp = makeParabola(3,4,50);
range = [-25,25];

figure
hold on
fplot(firstp,range)
fplot(secondp,range,'r:')
hold off

Visibility of Nested Functions

Parameterizing Functions

Overview

This topic explains how to store or access extra parameters for mathematical functions

that you pass to MATLAB® function functions, such as fzero or integral.

MATLAB function functions evaluate mathematical expressions over a range of

values. They are called function functions because they are functions that accept a

function handle (a pointer to a function) as an input. Each of these functions expects

that your objective function has a specific number of input variables. For

example, fzero and integral accept handles to functions that have exactly one input

variable.

Suppose you want to find the zero of the cubic polynomial x3 + bx + c for different

values of the coefficients b and c. Although you could create a function that accepts

three input variables (x, b, and c), you cannot pass a function handle that requires all

three of those inputs to fzero. However, you can take advantage of properties of

anonymous or nested functions to define values for additional inputs.

Parameterizing Using Nested Functions

One approach for defining parameters is to use a nested function—a function

completely contained within another function in a program file. For this example,

create a file namedfindzero.m that contains a parent function findzero and a nested

function poly:

function y = findzero(b,c,x0)

y = fzero(@poly,x0);

 function y = poly(x)
 y = x^3 + b*x + c;
 end
end

The nested function defines the cubic polynomial with one input variable, x. The parent

function accepts the parameters b and c as input values. The reason to

nest poly withinfindzero is that nested functions share the workspace of their parent

functions. Therefore, the poly function can access the values of b and c that you pass

to findzero.

To find a zero of the polynomial with b = 2 and c = 3.5, using the starting point x0 =

0, you can call findzero from the command line:

x = findzero(2,3.5,0)

x =
 -1.0945

Parameterizing Using Anonymous Functions

Another approach for accessing extra parameters is to use an anonymous function.

Anonymous functions are functions that you can define in a single command, without

creating a separate program file. They can use any variables that are available in the

current workspace.

For example, create a handle to an anonymous function that describes the cubic

polynomial, and find the zero:

b = 2;
c = 3.5;
cubicpoly = @(x) x^3 + b*x + c;
x = fzero(cubicpoly,0)

x =
 -1.0945

Variable cubicpoly is a function handle for an anonymous function that has one

input, x. Inputs for anonymous functions appear in parentheses immediately following

the @ symbol that creates the function handle. Because b and c are in the workspace

when you create cubicpoly, the anonymous function does not require inputs for those

coefficients.

You do not need to create an intermediate variable, cubicpoly, for the anonymous

function. Instead, you can include the entire definition of the function handle within

the call tofzero:

b = 2;
c = 3.5;
x = fzero(@(x) x^3 + b*x + c,0)

x =
 -1.0945

You also can use anonymous functions to call more complicated objective functions

that you define in a function file. For example, suppose you have a file

named cubicpoly.mwith this function definition:

function y = cubicpoly(x,b,c)
y = x^3 + b*x + c;
end

At the command line, define b and c, and then call fzero with an anonymous function

that invokes cubicpoly:

b = 2;
c = 3.5;
x = fzero(@(x) cubicpoly(x,b,c),0)

x =
 -1.0945

