
By

Dr. Reda Elbarougy

رضا الباروجى/ د

Lecturer of computer sciences

In Mathematics Department

Faculty of Science

Damietta University

رقم المحاضرة

2

ملاحظات التاريخ رقم المحاضرة

الفصل الاول–مقدمة 02-2020 1المحاضرة

اساسيات تحليل الخورازميات 03-03-2020 2المحاضرة

10-03-2020 3المحاضرة

17-03-2020 4المحاضرة

24-03-2020 5المحاضرة

31-03-2020 6المحاضرة

7المحاضرة

8المحاضرة

9المحاضرة

10المحاضرة

11المحاضرة

Chapter 5:

Linked Lists part II

3

أولا الإضافة

Inserting at the beginning of a list فى البدايةالاضافة

Inserting after a Given Node بعد عنصر معين الاضافة

Inserting Into a Sorted linked list الاضافة فى قائمة مرتبة

4

5.7. Insertion into a linked list

1. Example 5.13

2. Insertion Algorithms

1. Inserting at the beginning of a list

2. Algorithm 5.4 and example 5.14

3. Inserting after a Given Node

4. Algorithm 5.5

5. Inserting Into a Sorted linked list

6. Procedure 5.6, Algorithm 5.7, Ex. 5.15, Copying

Chapter 5: Linked Lists Part II

5

5.7 Insertion into a Linked List

6

 Let LIST be a linked list with successive nodes A

and B as pictured in Fig. 5-14(a).

Suppose a node N is to be inserted into the list

between nodes A and B.

5.7 Insertion into a Linked List

START

Node

A

Node

B

Fig. 5-14 (a) Before insertion

Insertion into a linked list

8

Node A now points to the new node N, and the node

N points to node B, to which A previously pointed.

START
Node

A

Node

B

Fig. 5-14 (b) After insertion

Node N

 Suppose our linked list is maintained in memory in the form

LIST(INFO, LINK, START, AVAIL)

 Figure 5-14 does not take into account that the memory space
for the new node N will come from the AVAIL list.

 Node N is to be inserted in to the list between nodes A and B

Three pointer fields are changed as follows:

1. The next pointer field of node A now points to the new node N,
to which AVAIL previously pointed.

2. AVAIL now point to the second node in the free pool, to which
node N previously pointed.

3. The next pointer field of node N now points to node B, to which
node A previously pointed.

5.7 Insertion into a linked list

5.7 Insertion into a linked list

10

Fig. 5-15

START
Node

A

Node

B

(a) After insertion

AVAIL Node N

Free storage list

Data list

(a) Consider Fig. 5-9, the alphabetical list of patients in a

ward. Suppose a patient Hughes is admitted to the ward.

EXAMPLE 5.13

Fig. 5-9

Hughes

Green

Kirk

EXAMPLE 5.13

Hughes

Green

Kirk

(b) Consider Fig. 5-12, not sorted list suppose new will be added at the

beginning of the list. Suppose Gordan is a new customer of Kelly

EXAMPLE 5.13

Hunter

Gordan

Fig. 5-12

(b) Consider Fig. 5-12, not sorted list suppose new will be added at the

beginning of the list. Suppose Gordan is a new customer of Kelly

EXAMPLE 5.13

Hunter

Gordan

(c) Suppose the data elements A, B, C, D, E and F are inserted one after

the other into the empty list in Fig 5-13 assume that each new node is

inserted at the beginning of the list

EXAMPLE 5.13

Fig. 5-13

EXAMPLE 5.13

16
Fig. 5-16

Since insertion algorithm will use a node in the AVAIL list, all of the

algorithm will include the following steps:

a)Check see if space is available in the AVAIL list. If not, i.e. if

AVAIL=NULL, then the algorithm will print the message OVERFLOW.

b)Removing the first node from the AVAIL list.

NEW := AVAIL, AVAIL:= LINK [AVAIL]

c)Copying new information into the new node.

INFO [New] := ITEM

5.7 Inserting a new node

Fig. 5-17

Possible cases of Insert Node

1. Insert into an empty list

2. Insert in front

3. Insert at back

4. Insert in middle

But, in fact, only need to handle two cases:

1. Insert as the first node (Case 1 and Case 2)

2. Insert in the middle or at the end of the list (Case 3 and

Case 4)

5.7 Inserting a new node

Insertion Operation

19

Algorithm 5.4:

INSFIRST(INFO, LINK, START, AVAIL, ITEM)

START: It has address of first node

AVAIL: It has the address of the first free node in memory

This algorithm inserts ITEM as the first node in the list.

1.[OVERFLOW?] If AVAIL= NULL, then: Write: OVERFLOW,
and Exit.

2.[Remove first node from AVAIL list.]

Set NEW:=AVAIL and AVAIL:=LINK[AVAIL].

3.Set INFO[NEW]:= ITEM. [Copies new data into new node.]

4.Set LINK[NEW] := START. [New node now points to original
first node.]

5.Set START:= NEW. [Changes START so it points to the new
node.]

6.Exit.

1-Insertion at the Beginning of a List

Step 1 to 3 have already been discussed.

step 2 and step 3 appears in Fig. 5-17

1-Insertion at the Beginning of a List

step 4 and step 5 appears in Fig. 5-18

Fig. 5-18 Insertion at the beginning of a list.

Example 5-14

22Fig. 5-19

Algorithm 5.5:INSLOC (INFO , LINK , START , AVAIL , LOC , ITEM)

This algorithm inserts ITEM so that ITEM follows the node with location

LOC or inserts ITEM as the first node when LOC = NULL.

1. [Overflow ?] If AVAIL = NULL , Then :

Write : OVERFLOW , and Exit.

2. [Remove first node from AVAIL list]

Set NEW := AVAIL and AVAIL :=LINK [AVAIL]

3. Set INFO [NEW] := ITEM. [Copies new data into new node.]

4. If LOC = NULL ,then : [Insert as first node.]

Set LINK [NEW] := START and START := NEW.

Else : [INSERT after node with location LOC.]

Set LINK [NEW] := LINK [LOC] and LINK [LOC] := NEW.

[End of If structure]

5. Exit.

2-Inserting after a given node

Algorithm 5.5:INSLOC (INFO , LINK , START , AVAIL , LOC , ITEM)

This algorithm inserts ITEM so that ITEM follows the node with location LOC or

inserts ITEM as the first node when LOC = NULL.

25

 ITEM must be inserted between nodes A and B so that

INFO(A)<ITEM<=INFO(B)

 Traverse the list using a pointer variable PTR

 Comparing the ITEM with INFO[PTR] at each node.

 Keep track the location of the preceding node by a pointer variable SAVE, as

in fig 5-20 SAVE and PTR are updated by the assignments

SAVE : =PTR and PTR : =LINK[PTR]

START

Node

A

Node

B

Fig :5-20

SAVE PTR

3-Inserting into a sorted linked list

26

Procedure 5.6: FINDA(INFO, LINK, START, ITEM, LOC)
This procedure finds the location LOC of the last node in a sorted list such that

INFO[LOC] < ITEM or sets LOC= NULL

1. [List Empty?] If START = NULL then:

Set LOC = NULL and return.

2. [special case?] If ITEM < INFO[START], then:

Set LOC = NULL and return.

3. Set SAVE=START and PTR = LINK[START] [initialize pointer]

4. Repeat step 5 and 6 while PTR ≠ NULL.

5. If ITEM < INFO[PTR] then:

Set LOC= SAVE and Return.

6. Set SAVE = PTR and PTR= LINK[PTR] [update pointer]

(End of step 4)

7. Set LOC= SAVE

8. Return.

Finding a Node

Procedure 5.6: FINDA(INFO, LINK, START, ITEM, LOC)
This procedure finds the location LOC of the last node in a sorted list such that

INFO[LOC] < ITEM or sets LOC= NULL

28

Algorithm 5.7:

INSSRT(INFO, LINK, START, AVAIL, ITEM)

This algorithm inserts an item into a sorted linked list.

1. [Use Procedure 5.6 to find the location of the node preceding ITEM]
Call FINDA(INFO, LINK, START, ITEM, LOC).

2. [Use algorithm 5.5 to insert ITEM after the node with location LOC]
Call INSLOC(INFO, LINK, START, AVAIL, LOC, ITEM).

3. Exit

3-Inserting into a sorted linked list

Insertion at the end of the list

Insert after a given position

Consider Fig. 5-9, the alphabetical list of patients in a ward.

Suppose a Jones is to be added

Simulate Algorithm 5.7 =Procedure 5.6 and then Algorithm 5.5

EXAMPLE 5.15

ITEM=Jones

INFO=BED

EXAMPLE 5.15

32Fig. 5-21

Problem

33

الحذف

34

5.8. Deletion from a linked list

1. Example 5.16

2. Deletion Algorithms

1. Deleting node following a Given Node

2. Algorithm 5.8

3. Deleting node with a Given Item of information

4. Algorithm 5.9, 5.10 and Example 5.17

Chapter 5: Linked Lists Part III

35

5.8 Deletion from a Linked List

36

37

• Let LIST be a linked list with a node N between nodes A and B.

suppose node N is to be deleted from the linked list.

• The deletion occurs as soon as the next pointer field of node A

is changed so that it points to node B.

5.8 Deletion from a Linked List

Fig. 5-22

38

• Suppose our linked list is maintained in memory in the form

• LIST(INFO, LINK, START, AVAIL)

• When a node N is deleted from our list, we will immediately

return its memory space to the AVAIL list. Specifically, for easier

processing, it will be returned to the beginning of the AVAIL list.

Deletion from a Linked List

Fig. 5-23

39

The three pointer variables are changed as follows:

1)The nextpointer field of node A now points to node B, where node

N previously pointed.

2)The nextpointer field of N now points to the original first node in

the free pool, where AVAIL previously pointed.

3)AVAIL now points to the deleted node N.

Two special cases

1.If the deleted node N is the first node in the list, then START will

point to node B; and

2.If the deleted node N is the last node in the list, then node A will

contain the NULL pointer.

Deletion from a Linked List

EXAMPLE 5.16 (a)

40

Green is to be deleted 11 Fields 8 Green 10 Jones 11 Fields 10 Jones

BED[8]=“”

Link[11]=10 10

Link[8]=22

AVAIL 8

41

EXAMPLE 5.16 (b)

special case first element: Teller, the first of Nelson is to be deleted

POINT[4]=1010

AVAIL=9

Link[9]=1111

EXAMPLE 5.16 (c)

42

E, B and C are deleted one after the other from the list in Fig. 5-16

Fig. 5-24The first three available nodes are:

INFO[3], which originally contained C

INFO[2], which originally contained B

INFO[5], which originally contained E

1-Deleting the Node Following a Given Node

43

Deletion operation deletes a node from the linked list & returns

the memory space of the deleted node N to the beginning of the

AVAIL list. Accordingly , all algorithms will include the following

pair of assignment , where LOC is the location of the deleted

node N.

LINK [LOC] := AVAIL and AVAIL := LOC

These two operation are pictured in following diagram.

Deletion Algorithm

Fig. 5-25

1-Deleting the Node Following a Given Node

45
Fig. 5-27 LINK[LOC]:=LINK[LOC]

Fig. 5-26 START:=LINK[START]

Algorithm 5.8.:-

DEL (INFO, LINK, START , AVAIL , LOC , LOCP)

This algorithm deletes the node N with location LOC . LOCP is the

location of the node which precedes N or , when N is the first node

LOCP = NULL.

1. If LOCP = NULL , then :

Set START := LINK [START] . [Deletes first node.]

Else :

Set LINK [LOCP] := LINK [LOC] . [Deletes node N]

[End of If structure .]

2. [Return deleted node to the AVAIL list .]

Set LINK [LOC] := AVAIL and AVAIL := LOC .

3. Exit

1-Deleting the Node Following a Given Node

47

Start

Read INFO, LINK, START

Read AVAIL, LOC, LOCP

Is LOCP=NULL

Link[LOCP]=Link[LOC]

Link[LOC]=AVAIL

AVAIL=LOC

STOP

START=LINK[START]

Yes

NO

48

The algorithm using C#

public void del(int[] info, int[] link, int start, int avail, int loc, int locp)

{

// Algorithm 5.8: this algorithm deletes the node N with location LOC.

// LOCP is the location of the node which precedes N or,

// when N is the first node LOCP = NULL.

if(locp==0)

start = link[start]; //Deletes first node.

else

link[locp] = link[loc]; //Deletes node N.

link[loc] = avail; //Return deleted node to the AVAIL list

avail=loc;

}

Problem

49

Problem

50

Problem

51

Problem

52

2-Deleting the Node with a Given ITEM of Information

53

54

Procedure 5. 9 :

FINDB (INFO, LINK, START, ITEM, LOC, LOCP)

This procedure finds the location LOC of the first node N

which contains ITEM & the location N.

 If ITEM does not appear in the list , then the procedure sets

LOC= NULL ;

 if ITEM appears in the first node then it sets LOCP =

NULL.

Finding a Node

55

Procedure 5. 9 :FINDB (INFO, LINK, START, ITEM, LOC, LOCP)

1.[List empty ?] If START = NULL , then :

Set Loc := NULL and LOCP := NULL , and Return.

[End of If structure]

2.[ITEM in first node ?] If INFO [START] := ITEM Then :

Set LOC := START and LOCP := NULL , and Return.

[End of If structure]

3. Set SAVE := START and PTR := LINK [START] . [Initiate Pointers.]

4. Repeat steps 5 & 6 while PTR ≠ NULL.

5. If INFO [PTR] = ITEM, then :

Set LOC := PTR and LOCP := SAVE , and Return .

[End of if structure.]

6. Set SAVE := PTR and PTR := LINK [PTR] . [Updates Pointers]

[End of step 4 loop.]

7. Set LOC := NULL [Search Unsuccessful.]

8. Return.

Finding a Node

56

Procedure 5. 9 : finds the location LOC of the first node N which contains ITEM & the

location LOCP of the node preceding N.

 If ITEM does not appear in the list, then the procedure sets LOC= NULL;

 if ITEM appears in the first node then it sets LOCP = NULL.

57

public int [] findb(int[] info, int[] link, int start, int item)

{

// Procedure 5.9: find LOC and LOCP

int loc, locp,save,ptr;

int[] output = new int[2];

if(start==0) //Is list empty?

{

loc=0; locp=0;

output[0] = loc; output[1] = locp; return output;

}

if(info[start]==item) //is ITEM in first node?

{

loc=start; locp=0;

output[0] = loc; output[1] = locp; return output;

}

save=start; ptr=link[start]; //Initiate Pointers.

while(ptr !=0)

{

if(info[ptr]==item)

{

loc=ptr; locp=save;

output[0] = loc; output[1] = locp; return output;

}

save=ptr; ptr=link[ptr]; //Updates Pointers.

}

loc=0; locp=0;//Search Unsuccessful.

output[0] = loc; output[1] = locp; return output;

}

Algorithm 5.10 :- DELETE (INFO, LINK , START ,AVAIL , ITEM)

This algorithm deletes from a linked list the first node N which contains the

given ITEM of information.

1. Call FINDB (INFO, LINK, START, ITEM, LOC, LOCP)

([use procedure 5.9 to find the location of N & its preceding node.]

2. If LOC = NULL Then: Write : ITEM not in list and Exit.

3. Call DEL(INFO,LINK,START,AVAIL,LOC,LOCP)

4. Exit.

2-Deleting the Node with a Given ITEM of Information

59

Algorithm 5.10 :- DELETE (INFO, LINK , START ,AVAIL , ITEM)

This algorithm deletes from a linked list the first node N which contains the

given ITEM of information.

EXAMPLE 5.17

60

ITEM=Green, INFO=BED, START=5 and AVAIL=2

Fig. 5-28

 Green is to be discharged

 Simulate Procedure 5.9 to find the location LOC of Green and the LOCP of the

patient proceeding Green.

 Then simulate Algorithm 5.10 to delete Green

Sorting A Linked list

62

Sorting A Linked list

public void selection_sort(int[] info, int[] link, int start)

{

int p1,p2,temp;

p1 = start ;

while(p1 !=0)

{

p2 = link[p1] ;

while(p2 !=0)

{

if (info[p1] > info[p2])

{

temp = info[p1];

info[p1] = info[p2] ;

info[p2] = temp ;

}

p2= link[p2];

}

p1 = link[p1] ;

}

}

Reverses a Linked List

Reverses a Linked List

public int reverse(int[] info, int[] link, int start)

{

int p1, p2, p3;

p3 = start;

p2 = 0;

while (p3 != 0)

{

p1 = p2;

p2 = p3;

p3 = link[p3];

link[p2]=p1;

}

start = p2;

return start;

}

65

• DELETE(INFO, LINK, START, AVAIL, ITEM)

– Delete a node with the value equal to ITEM from the list.

– If such a node is found, return its position. Otherwise,

return NULL.

• Steps

– Find the desirable node (similar to FINDB)

– Release the memory occupied by the found node

– Set the pointer of the predecessor of the found node to the

successor of the found node

• Like INSLOC, there are two special cases

– Delete first node

– Delete the node in middle or at the end of the list

Deleting a node

Program using C#

66

Program using C#

67

Program using C#

68

Program using C#

69

public int n=16,ALG=11,GEOM=5,AVAIL=9;

public int[] TEST = {0,0, 74, 0, 82, 84, 78, 74, 100, 0, 0, 88, 62, 74, 93, 0, 0};

public int[] LINK = {0,16,14,1,0,12,0,8,13,10,3,2,7,6,4,0,15};

Program using C#

70

button_Click()

{

listBox1.Items.Clear();

listBox2.Items.Clear();

for (int i = 1; i <=n; i++)

{

listBox1.Items.Add(TEST[i]);

listBox2.Items.Add(LINK[i]);

}

}

Program using C# Print LIST

71

public void print_list(int[] info, int[] link, int start)

{

listBox3.Items.Clear();

listBox4.Items.Clear();

int ptr = start;

while (ptr != 0)

{

listBox3.Items.Add(ptr);

listBox4.Items.Add(info[ptr]);

ptr = link[ptr];

}

}

Program using C#

72

private void button9_Click(object sender, EventArgs e)

{

print_list(TEST, LINK, ALG);

}

Program using C#

73

private void button11_Click(object sender, EventArgs e)

{

selection_sort(TEST, LINK, ALG);

print_list(TEST, LINK, ALG);

}

Program using C#

74

private void button10_Click(object sender, EventArgs e)

{

print_list(TEST, LINK, GEOM);

}

Program using C#

75

private void button12_Click(object sender, EventArgs e)

{

selection_sort(TEST, LINK, GEOM);

print_list(TEST, LINK, GEOM);

}

Program using C#

76

private void button13_Click(object sender, EventArgs e)

{

GEOM=reverse(TEST, LINK, GEOM);

print_list(TEST, LINK, GEOM);

}

Program using C# Del

77

private void button15_Click(object sender, EventArgs e)

{

int LOC;

int LOCP;

LOC = int.Parse(textBox2.Text);

LOCP = int.Parse(textBox3.Text);

del(TEST, LINK, ALG, AVAIL, LOC, LOCP);

print_list(TEST, LINK, ALG);

}

Program using C# Del

78

Program using C# Find and Del

79

private void button16_Click(object sender, EventArgs e)

{

int LOC, LOCP,ITEM;

int[] Location = new int[2];

ITEM = int.Parse(textBox7.Text);

Location = findb(TEST, LINK, ALG, ITEM);

LOC = Location[0];

LOCP = Location[1];

label19.Text = "LOC=" + LOC;

label20.Text = "LOCP=" + LOCP;

del(TEST, LINK, ALG, AVAIL, LOC, LOCP);

print_list(TEST, LINK, ALG);

}

Program using C#

80

تم الإنتهاء من المحاضرة

