
By

Dr. Reda Elbarougy

رضا الباروجى/ د

Lecturer of computer sciences

In Mathematics Department

Faculty of Science

Damietta University

رقم المحاضرة

2

ملاحظات التاريخ رقم المحاضرة

الفصل الاول–مقدمة 02-2020 1المحاضرة

اساسيات تحليل الخورازميات 03-03-2020 2المحاضرة

10-03-2020 3المحاضرة

17-03-2020 4المحاضرة

24-03-2020 5المحاضرة

31-03-2020 6المحاضرة

07-04-2020 7المحاضرة

8المحاضرة

9المحاضرة

10المحاضرة

11المحاضرة

Chapter 6: Part-I

Stacks, Queues, Recursion

3

6.1 Introduction

6.2 Stacks

Postponed Decisions

6.3 Array Representation of Stacks

Operation on Stacks (Push and POP)

Minimizing overflow

6.4 Arithmetic Expressions; Polish notation

Evaluation of a postfix Expression

Transforming Infix Expression into Postfix Expressions

6.5 Quicksort, an application of stacks

Complexity of the quicksort algorithm

Chapter 6: Stacks

4

6.1 Introduction

5

Linear list and linear array allowed one to insert

and delete elements at any place in the list

(Beginning, end or middle).

6.1 Introduction

Stack: Last-in first-out (LIFO)

Queue: First-in first-out (FIFO)

6

Stacks are important in compilers and operating

systems: Insertions and removals are made only at

one end of a stack—its top.

Queues represent waiting lines; insertions are made

at the back (also referred to as the tail) of a queue

and removals are made from the front (also

referred to as the head) of a queue.

6.1 Introduction

7

 A Stack is a list of elements in which an element may be

inserted or deleted only at one end, called the top of the

stack. The other end is called the bottom.

 This means, in particular, that elements are removed from

a stack in the reverse order of that in which they were

inserted into the stack.

 Special terminology is used for two basic operations

associated with stacks.

 “Push” is the term used to insert an element into a stack.

 “Pop” is the term used to delete an element from a stack.

8

6.2 Stacks

6.2 Stacks

9

 An item may be added or removed only from the top of a

stack. This means, in particular, that the last item to be

added to a stack is the first item to be removed.

Accordingly, stacks are also called last-in first-out (LIFO)

lists.

 Suppose the following 6 elements are pushed, in order,

onto an empty stack: AAA, BBB, CCC, DDD, EEE, FFF

10

Example 6.1

FFF

EEE

DDD

CCC

BBB

AAA

TOP

AAA

BBB

CCC

DDD

EEE

FFF
.

.

.

1

2

3

4

5

6

.

.

.

N-1

N

TOP

AAA BBB CCC DDD EEE FFF …

1 2 3 4 5 6 … N-1 N

TOP

11

Example 6.1

12

Application of a stack

(i) Conversion of infix to postfix form

(ii) Reversing of a line.

(iii)Removal of recursion

(iv)Evaluating post fix expression

13

application of STACK :- Postponed Decisions

Fig. 6-4

• Stacks are frequently used to indicate the order

of the processing of data when certain steps of

the processing must be postponed until other

conditions are fulfilled.

 Stacks may be represented in the computer in various

ways, usually by means of a one-way list or a linear

array.

 Our stack is maintained by a linear array STACK: a

pointer variable TOP, which contains the location of the

top element of the stack; and a variable MAXSTK which

gives the maximum number of elements that can be held

by the stack.

 The condition TOP = 0 or TOP = NULL will indicate that

the stack is empty.

14

6.3 Array Representation of Stacks

• Figure pictures such an array representation of a stack.

• Since TOP = 3, the stack has three elements, XXX, YYY and ZZZ;

and since MAXSTK = 8, there is room for 5 more items in the stack.

15

XXX YYY ZZZ

1 2 3 4 5 6 7 8

TOP

STACK

MAXSTK

Array Representation of Stacks

Procedure 6.1:

PUSH(STACK, TOP, MAXSTK, ITEM)

This procedure pushes an ITEM onto a stack.

1. [Stack already filled?]

If TOP = MAXSTK, then: Print: OVERFLOW, and Return.

2. Set TOP = TOP + 1 [Increases TOP by 1]

3. Set STACK[TOP] = ITEM [Inserts ITEM in new TOP position]

4. Return.

16

Adding (Pushing) an item onto stack

Procedure 6.2:

POP(STACK, TOP, ITEM)

This procedure deletes the top element of STACK and assigns

it to the variable ITEM.

1. [STACK has no item to be removed?]

If TOP = 0, then: Print: UNDERFLOW, and Return.

2. Set ITEM = STACK[TOP] [Assigns TOP element to ITEM]

3. Set TOP = TOP – 1 [Decreases TOP by 1]

4. Return.

17

Removing (Popping) an item from a stack

18

Example 6.2

XXX YYY ZZZ WWW

1 2 3 4 5 6 7 8

TOP

STACK

MAXSTK

XXX YYY ZZZ

1 2 3 4 5 6 7 8

TOP

STACK

MAXSTK

1. Since TOP=3, control is transferred to Step2.

2. TOP=3+1=4.

3. STACK[TOP]=STACK[4]=WWW

4. Return.

Note that WWW is now the top element in the stack.

(a) Consider the following stack. Simulate the operation PUSH(STACK,WWW)

19

Example 6.2

XXX YYY

1 2 3 4 5 6 7 8

TOP

STACK

MAXSTK

XXX YYY ZZZ

1 2 3 4 5 6 7 8

TOP

STACK

MAXSTK

(b) Consider the following stack. Simulate the operation POP(STACK,ITEM)

1. Since TOP=3, control is transferred to Step2.

2. ITEM=ZZZ

3. TOP=3-1=2.

4. Return.

Observe that STACK[TOP]=STACK[2]=YYY is now the top element in the stack.

20

Example

Suppose the following 6 elements are pushed , in order , onto

an empty stack :

• AAA, BBB , CCC ,DDD , EEE , FFF

21

Stacks

22

Push Operation

23

Pop Operation

24

Minimizing Overflow

 Difference between underflow and overflow in dealing

with stack

 Underflow depends upon the given algorithm and the

given data hence no direct control by the programmer.

 Overflow depends upon the arbitrary choice of the

programmer for the amount of memory space reserved

for the stack and this choice does influence the number

of times overflow may occur

25

Example 6.3

• Let Q be in arithmetic expression involving constants and

operations.

• Discuss an algorithm which finds the value of Q by using

reverse polish (postfix) notation.

• Stack is an essential tool in this algorithm.

• Binary operations in Q may have different levels of

precedence.

• Specifically, we assume the following three levels of

precedence for the usual five binary operations.

• Highest: Exponentiation (↑)

• Next highest: Multiplication (*) & Division (/)

• Lowest: Addition (+) & Subtraction (-)

26

6.4 Arithmetic Expressions; Polish Notation

• Suppose we want to evaluate the following parenthesis

free arithmetic expression:

• 2 ↑ 3 + 5 * 2 ↑ 2 – 12 / 6

• First we evaluate the exponentiations to obtain

• 8 + 5 * 4 – 12 / 6

• Then we evaluate the multiplication and division to

obtain 8 + 20 – 2.

• Last, we evaluate the addition and subtraction to obtain

the final result, 26.

• Observe that the expression is traversed three times,

each time corresponding to a level of precedence of the

operations.

27

Example 6.4

28

Infix , postfix and prefix notations

• For most common arithmetic operations, the operator

symbol is placed between its two operands. For

example,

• A + B, C – D, E * F, G / H

• This is called infix notation. With this notation, we must

distinguish between

• (A + B) * C and A + (B * C)

by using either parentheses or some operator-

precedence convention such as the usual precedence

levels.

• Accordingly, the order of the operators and operands in

an arithmetic expression does not uniquely determine

the order in which the operations are to be performed.

29

Polish Notation

• Polish notations named after the polish mathematician Jan

Lukasiewiez, refers to the notions in which operators placed

before its two operands

• For ex: + AB - CD * EF / GH

• We translate, step by step, the following infix expressions into

Polish notation using brackets [] to indicate a partial

translation:

• (A + B) * C = [+ AB] * C = * + ABC

• A + (B * C) = A + [* BC] = + A * BC

• (A + B)/(C – D) = [+ AB] / [- CD] = / + AB – CD

• The fundamental property of polish notation is that the order in

which the operations are to be performed is completely

determined by the positions of the operators and operands in

the expression.

• Accordingly, one never needs parentheses when writing

expressions in polish notation.

30

Polish Notation

Reverse Polish Notations:-

 it refers to the notation in which the operator symbol is

placed after its two operands.

For ex: AB + CD - EF * GH /

• One never needs parentheses to determine the order of

the operations in any arithmetic expression written in the

reverse polish notation.

• The order is defined completely by the relative order of

the operands and the operators.

• This notation is frequently called postfix (or suffix)

notation, whereas prefix notation is the term used for

polish notation.

31

Reverse Polish Notation

• The Computer Usually Evaluates an Arithmetic

expression written in infix notation into steps

1. First converts the expression to postfix notation

2. Evaluates the postfix expression

• Stack is the Main Tool that is Used to Accomplish

given Task.

INFIX PREFIX

(A + B) * C [+ A B] * C = * + A B

A + (B * C) A + [* B C] = + A * B C

(A + B) / (C – D) [+ AB] / [- CD] = / + AB-CD

Evaluation of Expression

Algorithm 6.3

Suppose P is an arithmetic expression written in postfix notation.

The following algorithm, which uses a STACK to hold operands, evaluates P.

This algorithm finds the VALUE of an arithmetic expression P written in postfix

notation.

1. Add right parenthesis “)” at the end of P. [This acts as sentinel]

2. Scan P from left to right and repeat steps 3 and 4 for each element of P until

the sentinel “)” is encountered.

3. If an operand is encountered, put it on STACK.

4. If an operator Θ is encountered, then:

a. Remove the two top elements of STACK, where A is the top element

and B is the next-to-top element.

b. Evaluate B Θ A.

c. Place the result of (b) back on STACK.

[End of If structure]

[End of step 2 loop]

5. Set VALUE equal to the top element on STACK.

6. Exit. 33

Evaluation of a Postfix Expression

• Algorithm 6.3

• If P is an arithmetic expression written in postfix notation. This

algorithm uses STACK to hold operands, and evaluate P.

34

Evaluation of a Postfix Expression

Following is an infix arithmetic expression

(5 + 2) * 3 – 8/ 4

And its postfix is:

5 2 + 3 * 8 4 / –

Now add “)” at the end of expression as a sentinel.

5 2 + 3 * 8 4 / –)

35

Example

36

Example

Scanned

Elements

Stack Action to do

(1) 5 5 Pushed on stack

(2) 2 5, 2 Pushed on Stack

(3) + 7 Remove the two top elements and calculate 5 + 2 and

push the result on stack

(4) 3 7, 3 Pushed on Stack

(5) * 21 Remove the two top elements and calculate 7 * 3 and

push the result on stack

(6) 8 21, 8 Pushed on Stack

(7) 4 21, 8, 4 Pushed on Stack

(8) / 21, 2 Remove the two top elements and calculate 8 / 4 and

push the result on stack

(9) - 19 Remove the two top elements and calculate 21 - 2 and

push the result on stack

(10)) 19 Sentinel) encounter , Result is on top of the STACK

5 2 + 3 * 8 4 / –)

Consider the following arithmetic expression P written in postfix

notation:

P: 5, 6, 2, +, *, 12, 4, /, -

P: 5, 6, 2, +, *, 12, 4, /, -,)

P: (1), (2), (3), (4), (5), (6), (7), (8), (9), (10)

37

Example 6.5

Algorithm 6.4 POLISH(Q, P)

Suppose Q is an arithmetic expression written in infix notation.

This algorithm finds the equivalent postfix expression P.

38

Transforming Infix Expressions into Postfix

Expressions

• The following Algorithm Transforms the Infix Expression Q

into its Equivalent Postfix Expression P

• The Algorithm uses a STACK to Temporarily Hold

Operators and Left Parentheses.

• The Postfix Expression P will be Constructed from Left to

Right using the Operands and Left Parentheses.

• The Postfix Expression P will be Constructed from Left to

Right using the Operands from Q and the Operators which

are Removed from STACK

• We begin by Pushing a Left Parenthesis onto STACK and

Adding Right Parentheses at the End of Q

• The Algorithm is Completed when STACK is Empty.

Transforming Infix into Postfix

1. Push “(” onto STACJK, and add “)” to the end of Q.

2. Scan Q from left to right and repeat steps 3 to 6 for each element of

Q until the STACK is empty.

3. If an operand is encountered, add it to P.

4. If a left parenthesis is encountered, push it onto STACK.

5. If an operator Θ is encountered, then:

a. Repeatedly pop from STACK and add to P each operator (on the top of

STACK) which has the same precedence as or higher precedence than Θ.

b. Add Θ to STACK.

[End of If structure]

6. If a right parenthesis is encountered, then:

a. Repeatedly POP from STACK and add to P each operator (on the top of

STACK) until a left parenthesis is encountered.

b. Remove the left parenthesis. [Do not add it to P]

[End of If structure]

[End of step 2 loop]

7. Exit.
40

Transforming Infix Expressions into Postfix

Expressions

 Consider the following arithmetic infix expression Q:

Q:A + (B * C – (D / E ↑ F) * G) * H

 Convert Q: A+(B * C – (D / E ^ F) * G) * H into

postfix form showing stack status .

 Now add “)” at the end of expression

 A+(B * C – (D / E ^ F) * G) * H)

 and also Push a “(“ on Stack.

41

Example

42

Example

Symbol Scanned Stack Expression Y
(

(1) A (A
(2) + (+ A
(3) ((+(A
(4) B (+(AB
(5) * (+(* AB
(6) C (+(* ABC
(7) - (+(- ABC*
(8) ((+(-(ABC*
(9) D (+(-(ABC*D
(10) / (+(-(/ ABC*D
(11) E (+(-(/ ABC*DE
(12) ^ (+(-(/^ ABC*DE
(13) F (+(-(/^ ABC*DEF
(14)) (+(- ABC*DEF^/
(15) * (+(-* ABC*DEF^/
(16) G (+(-* ABC*DEF^/G
(17)) (+ ABC*DEF^/G**
(18) (+* ABC*DEF^/G*H
(19) (+* ABC*DEF^/G*-H
(20)) empty ABC*DEF^/G*-H*+

A+(B * C – (D / E ^ F) * G) * H)

43

Example

Quick Sort An Stacks Application

• Quick Sort works on Divide and Conquer Rule

• Quick Sort Strategy is to Divide a List or Set into
Two Sub-Lists or Sub-Sets.

• Pick an Element, Called a Pivot, from the List.

• Reorder the List so that all Elements which are Less
than the Pivot come Before the Pivot and so that
All Elements Greater than the Pivot come After it.
After this Partitioning, the Pivot is in its Final
Position. This is called the Partition operation.

• Recursively Sort the Sub-List of Lesser Elements
and the Sub-List of Greater Elements.

Quick Sort An Stacks Application

 Let A be a list of n data items. “Sorting A” refers to the operation of

rearranging the elements of A so that they are in some logical order,

such as numerically ordered when A contains numerical data, or

alphabetically ordered when A contains character data.

 Quicksort is an algorithm of the divide and conquer type. That is, the

problem of sorting a set is reduced to the problem of sorting two

smaller sets.

 Suppose A is the following list of 12 numbers.

 44, 33, 11, 55, 77, 90, 40, 60, 99, 22, 88, 66

 The reduction step of the quicksort algorithm finds the final position

of one of the numbers; in this illustration, we use the first number,

44. this is accomplished as follows. Beginning with the last number,

66, scan the list from right to left, comparing each number with 44

and stopping at the first number less than 44. The number is 22.

interchange 44 and 22 to obtain the list:

46

Quicksort: An application of Stacks

 22, 33, 11, 55, 77, 90, 40, 60, 99, 44, 88, 66

 (Observe that the numbers 88 and 66 to the right of 44 are each

greater than 44). Beginning with 22, next scan the list in the opposite

direction, from left to right, comparing each number with 44 and

stopping at the first number greater than 44. the number is 55.

interchange 44 and 55 to obtain the list:

 22, 33, 11, 44, 77, 90, 40, 60, 99, 55, 88, 66

 (Observe that the numbers 22, 33, and 11 to the left of 44 are each

less than 44). Beginning this time with 55, now scan the list in the

original direction, from right to left, until meeting the first number less

than 44. It is 40. Interchange 44 and 40 to obtain the list:

 22, 33, 11, 40, 77, 90, 44, 60, 99, 55, 88, 66

 (Again, the numbers to the right of 44 are each greater than 44.)

Beginning with 40, scan the list from left to right. The first number

greater than 44 is 77. Interchange 44 and 77 to obtain the list:

47

Quicksort: An application of Stacks

• 22, 33, 11, 40, 44, 90, 77, 60, 99, 55, 88, 66

• (Again, the numbers to the left of 44 are each less than 44.)

Beginning with 77, scan the list from right to left seeking a number

less than 44. we do not meet such a number before meeting 44. this

means all the numbers have been scanned and compared with 44.

furthermore, all numbers less than 44 now form the sublist of

numbers to the left of 44, and all numbers greater than 44 now form

the sublist of numbers to the right of 44.

• 22, 33, 11, 40, 44, 90, 77, 60, 99, 55, 88, 66

• Thus 44 is correctly placed in its final position, and the task of

sorting the original list A has now been reduced to the task of sorting

each of the above sublists.

48

First Subset Second Subset

Quicksort: An application of Stacks

49

Quicksort: An application of Stacks

50

Example 6.7

• Boundary Values :

– Address of the First and Last values of Sub-List

Lower 1 Upper 12

Lower Empty Upper Empty

Lower 1,6 Upper 4,12

Lower 1,6 Upper 4,10

Example 6.7

52

Example 6.7

And so on. The algorithm ends when the stack do not

contain any sublist to be processed by the reduction

step.

A[6] A[7] A[8] A[9] A[10] A[11] A[12]

90 77 60 99 55 88 66

66 77 60 99 55 88 90

66 77 60 90 55 88 99

66 77 60 88 55 90 99

First Sub-List Second Sub-List

Procedure 6.5 QUICK (A, N, BEG, END, LOC)

Here A is an array with N elements parameters BEG &

END contain the boundary value of sublist of A to

which this procedure applies.

LOC keeps track of the position of the first element

A[BEG] of the sublist during the procedure.

The local variables LEFT & RIGHT will contain the

boundary values of the list of elements that have not

been scanned.

• A : Name of Array

• N : Number of Elements

• BEG : Beginning Boundary Value

• END : Ending Boundary Value

• LOC : Position of the First Element A[BEG]

• Local Variables : boundary values of the list of
elements that have not been scanned

– LEFT

– RIGHT

Procedure 6.5 QUICK (A, N, BEG, END, LOC)

Step 1. [Initialize] Set LEFT := BEG, RIGHT := END and LOC := BEG

Step 2. [Scan from Right to Left]

a) Repeat while A[LOC] <= A[RIGHT]

RIGHT := RIGHT – 1

[End of Loop]

b) If LOC = RIGHT, then : Return

c) If A[LOC] > A [RIGHT] ,then:

1) [Interchange A [LOC] and A[RIGHT]]

TEMP := A[LOC],

A[LOC] = A[RIGHT],

A[RIGHT]=TEMP

2) Set LOC := RIGHT

3) Go to Step 3

[End of If Structure]

Procedure 6.5 QUICK (A, N, BEG, END, LOC)

Step 3. [Scan from Left to Right]

a) Repeat while A[LEFT] <= A[LOC]

LEFT := LEFT + 1

[End of Loop]

b) If LOC = LEFT, then : Return

c) If A[LEFT] > A [LOC] ,then:

1) [Interchange A [LEFT] and A[LOC]]

TEMP := A[LOC], A[LOC] = A[LEFT],

A[LEFT]=TEMP

2) Set LOC := LEFT

3) Go to Step 2

[End of If Structure]

Procedure 6.5 QUICK (A, N, BEG, END, LOC)

1. [Initialize] TOP := 0

2. [PUSH Boundary values of A onto Stacks when 2 or More Elements]

If N > 1, then TOP:=TOP+1, LOWER[1]:=1, UPPER[1]:=N

3. Repeat Steps 4 to 7 while TOP != 0

4. [Pop Sub-List from Stacks]

Set BEG := LOWER[TOP] , END := UPPER[TOP]

TOP := TOP -1

5. Call QUICK (A, N, BEG, END, LOC)

6. [Push Left Sub-List onto Stacks when 2 or More Elements]

If BEG < LOC - 1 then TOP := TOP + 1, LOWER[TOP] := BEG,

UPPER[TOP] := LOC – 1 [End of If Structure]

7. [Push Right Sub-List onto Stacks when 2 or More Elements]

If LOC + 1 < END then TOP := TOP + 1, LOWER[TOP] := LOC + 1,

UPPER[TOP] := END [End of If Structure] [End of Step 3 Loop]

8. [Exit] (Quick Sort)

Procedure 6.6: Quicksort algorithm

58

Complexity of the Quicksort algorithm

The worst case

59

Complexity of the Quicksort algorithm

The average case

من المحاضرةتم الإنتهاء

