Data Structure

Sy s S
cudad) @3@\9 sluos| @@b A48 ﬂ‘)

By
Dr. Reda Elbarougy
o Lay [
Lecturer of computer sciences
In Mathematics Department
Faculty of Science
Damietta University

b_palaall eﬁ J
<UaaMa @Jm\ d_palaall ?EJ
Js¥) Juadl) — dasia 2020-02 1 5_pucalaall
Glaa jlpead) Julas cluulal 2020-03-03 | 2 5 palall
2020-03-10| 3 5 palaall

2020-03-17| 4 5 a4l
2020-03-24 | 5 5_alaall

2020-03-31 | 6 b_palaall
2020-04-07

Chapter 6: Part-I
Stacks, Queues, Recursion

Chapter 6: Stacks

6.1 Introduction

6.2 Stacks
Postponed Decisions

6.3 Array Representation of Stacks
Operation on Stacks (Push and POP)
Minimizing overflow

6.4 Arithmetic Expressions; Polish notation
Evaluation of a postfix Expression
Transforming Infix Expression into Postfix Expressions

6.5 Quicksort, an application of stacks
Complexity of the quicksort algorithm

6.1 Introduction

» Linear list and linear array allowed one to insert
and delete elements at any place In the list
(Beginning, end or middle).

Stack: Last-in first-out (LIFO)

BUS
STOP

Fig. 6-2 Queue waiting for a bus.

6.1 Introduction

» Stacks are important in compilers and operating
systems: Insertions and removals are made only at
one end of a stack—Its top.

» Queues represent waiting lines; insertions are made
at the back (also referred to as the tail) of a queue
and removals are made from the front (also
referred to as the head) of a queue.

6.2 Stacks

» A Stack is a list of elements in which an element may be
Inserted or deleted only at one end, called the top of the
stack. The other end is called the bottom.

» This means, in particular, that elements are removed from
a stack In the reverse order of that in which they were
Inserted into the stack.

» Special terminology is used for two basic operations
associated with stacks.

> “Push” is the term used to insert an element into a stack.
» “"Pop” is the term used to delete an element from a stack.

Deletions 4\ ‘/'\ Insertions

Top

Bottom

6.2 Stacks

» An item may be added or removed only from the top of a
stack. This means, in particular, that the last item to be
added to a stack is the first item to be removed.

Accordingly, stacks are also called last-in first-out (LIFO)
lists.

Deletions 4——\ ‘/"_\ Insertions
Top

Bottom

Example 6.1

» Suppose the following 6 elements are pushed, in order,
AAA, BBB, CCC, DDD, EEE, FFF

onto an empty stack:

TOP

O O A W DN P

N-1

AAA

BBB

CCC

DDD

EEE

FFF

1

AAA

BBB

CCC

DDD

EEE

FFF

2

3

4

TOP

5

6

_ 1

N-1

TOP

FFF

EEE

DDD

CCC

BBB

AAA

10

STACK: AAA, BBB CCC DDD EEE FFF

 The 1mp11catlon is that the right-most element is the top element. We emphasxze that regardless of the way a stack
is described, its underlying property is that insertions and deletions can occur only at the top of the stack. This
means EEE cannot be deleted before FFF is deleted, DDD cannot be deleted before EEE and FFF are deleted,
o and so on. Consequently, the elements may be popped from the stack only in the reverse order of that in whxch
~ thev were pushed onto the stack. ‘ : ;

‘Consider again the AVAIL list of available nodes discussed in Chap. 5. Recall that free nodes were
removed only from the beginning of the AVAIL list, and that new available nodes were inserted only at
the beginning of the AVAIL list. In other words, the AVAIL list was implemented as a stack. This
implementation of the AVAIL list as a stack is only a matter of convenience rather than an inherent
part of the structure. In the following subsection we discuss an important situation where the stack is an

-essential tool of the processing algorithm itself.

11

Application of a stack

(1) Conversion of infix to postfix form
(i) Reversing of aline.

(1l1)Removal of recursion

(iv) Evaluating post fix expression

12

application of STACK :- Postponed Decisions

« Stacks are frequently used to indicate the order
of the processing of data when certain steps of
the processing must be postponed until other
conditions are fulfilled.

C
B B B
A A A A A
(a) (b) () (d) (e) (f)

Fig. 6-4
13

6.3 Array Representation of Stacks

» Stacks may be represented in the computer in various
ways, usually by means of a one-way list or a linear
array.

» Our stack is maintained by a linear array STACK: a
pointer variable TOP, which contains the location of the
top element of the stack; and a variable MAXSTK which
gives the maximum number of elements that can be held
by the stack.

» The condition TOP = 0 or TOP = NULL will indicate that
the stack is empty.

14

Array Representation of Stacks

« Figure pictures such an array representation of a stack.

« Since TOP = 3, the stack has three elements, XXX, YYY and ZZZ;:
and since MAXSTK = 8, there is room for 5 more items In the stack.

STACK
Xxx |Yvy |zzz
1 2 3 4 5 6 7 8
4 MAXSTK ——

TOP

Adding (Pushing) an item onto stack

Procedure 6.1:
PUSH(STACK, TOP, MAXSTK, ITEM)
This procedure pushes an ITEM onto a stack.
1. [Stack already filled?]
If TOP = MAXSTK, then: Print: OVERFLOW, and Return.
2. Set TOP =TOP + 1 [Increases TOP by 1]
Set STACK[TOP] = ITEM [Inserts ITEM in new TOP position]
4. Return.

“o

16

Removing (Popping) an item from a stack

Procedure 6.2:
POP(STACK, TOP, ITEM)
This procedure deletes the top element of STACK and assigns
it to the variable ITEM.
1. [STACK has no item to be removed?]
If TOP =0, then: Print: UNDERFLOW, and Return.
2. Set ITEM = STACK[TOP] [Assigns TOP element to ITEM]
Set TOP =TOP — 1 [Decreases TOP by 1]
4. Return.

-

17

Example 6.2

(a) Consider the following stack. Simulate the operation PUSH(STACK,WWW)

STACK

XXX |YYY |ZzzZ

1 2 3 4 5 6 7 8

Top —32 MAXSTK ——

1. Since TOP=3, control is transferred to Step2.
2. TOP=3+1=4.
3. STACK[TOP]=STACK[4]=WWW
4. Return.

Note that WWW is now the top element in the stack.

STACK

Xxx |yyy [zzz [www
1 2 3 4 5 6 7 8
TOP iy MAXSTK ——

18

Example 6.2

(b) Consider the following stack. Simulate the operation POP(STACK,ITEM)

STACK
XXX | YYY |ZzzZ
1 2 3 4) 6 7 8
Top —3 MAXSTK ——
1. Since TOP=3, control is transferred to Step2.
2. ITEM=ZZZ
3. TOP=3-1=2.
4. Return.
Observe that STACK[TOP]=STACK][2]=YYY is now the top element in the stack.
STACK
XXX |YYY
1 2 3 4 5 6 7 8

_ 1

TOP 4 MAXSTK

19

Example

Suppose the following 6 elements are pushed , in order , onto

an empty stack :
« AAA,BBB,CCC ,DDD, EEE, FFF

A] " BJ " CI " n] [E] " F] E 6>

™ FFF
—p| EEE EEE
—* DDD DDD DDD
CCC CcCcC CCC cCC
EBB EBB EBB EBB BEB
’—D AAA AAA AAA AAA AAA AAA

Tﬂp =0 Tﬂp -I-uF Tﬂp Tﬂp THF THF

Empty
stack

STACK: AAA, BBB , CCC ,DDD, EEE, FFF

20

HH""\]

e o el Gk e B T T MY

23
15
22

41
34

A Stack with § elements

STACKSLIE:]
ATACKSUE-I

top=4

STACKSIE-]
STACKSLIE-]

= o e Lad s TRy

A [l stack

top=stacksize-1

STACRAZE-L
STACKELZE-2

e R e

An empiy Stock
top=-1

21

Push an item onto the top of the stack (insert an item)

STACKSIZE-1
STACKSIZE-2
6
5
23 4
15 3
22 2
41 1
34 0
Before PUSH

(fop=4, counr=35)

STACKSIZE-1
STACKSIZE-2

15 =

23 4

15 3

22 2

41 1

34 0

After PUSH

(fop=35, count= 6)

22

Pop an item off the top of the stack (delete an item)

STACKSIZE-1
STACKSIZE-2
6
5

23 |4

15 |3

22 |2

41 |1

34 |0

Before POP

(top=4, count=35)

STACKSIZE-1
STACKSIZE-2
5
4
15 3
22 | 2
41 1
34 |0
After POP
(fop=3 count=4)

23

Minimizing Overflow

» Difference between underflow and overflow in dealing
with stack

» Underflow depends upon the given algorithm and the
given data hence no direct control by the programmer.

» Overflow depends upon the arbitrary choice of the
programmer for the amount of memory space reserved
for the stack and this choice does influence the number

of times overflow may occur

Generally speaking, the number of elements in a stack fluctuates as elements are added to or
removed from a stack. Accordingly, the particular choice of the amount of memory for a given stack
involves a time-space tradeoff. Specifically, initially reserving a great deal of space for each stack will
decrease the number of times overflow may occur; however, this may be an expensive use of the space
if most of the space is seldom used. On the other hand, reserving a small amount of space for each
stack may increase the number of times overflow occurs; and the time required for resolving an
overflow, such as by adding space to the stack, may be more expensive than the space saved.
/' Various techniques have been developed which modify the array representation of stacks so that the

amount of spac,e reserved for more than one stack may be more efficiently used. Most of these
techniques lie beyond the scope of this text. We do illustrate one such technique in the following

example.

Suppose a given algorithm requires two stacks, A and B. One can define an array STACKA with n, elements |
for stack A and an array STACKB with n, elements for stack B. Overflow will occur when either stack A contains
more than n, elements or stack B contains more than n, elements. |

Suppose instead that we define a single array STACK with n = n, + n, elements for stacks A and B together.
As pictured in Fig. 6-6, we define STACK{[1] as the bottom of stack A and let A “grow” to the right, and we define
' STACK][n] as the bottom of stack B and let B “grow” to the left. In this case, overflow will occur only when A and
B together have more than n=n, + n, elements. This technique will usually decrease the number of times
overflow occurs even though we have not increased the total amount of space reserved for the two stacks. In using
this data structure, the operations of PUSH and POP will need to be modified. 4

1. 3 4 B e g "

Stack A Stack B
Fig. 6-6

25

6.4 Arithmetic Expressions; Polish Notation

Let Q be in arithmetic expression involving constants and
operations.

Discuss an algorithm which finds the value of Q by using
reverse polish (postfix) notation.

Stack is an essential tool in this algorithm.

Binary operations in Q may have different levels of
precedence.

Specifically, we assume the following three levels of
precedence for the usual five binary operations.

Highest: Exponentiation (1)
Next highest: Multiplication (*) & Division (/)
Lowest: Addition (+) & Subtraction (-)

26

Example 6.4

Suppose we want to evaluate the following parenthesis
free arithmetic expression:

213+5*212-12/6
First we evaluate the exponentiations to obtain
8+5*4-12/6

Then we evaluate the multiplication and division to
obtain 8 + 20 — 2.

Last, we evaluate the addition and subtraction to obtain
the final result, 26.

Observe that the expression is traversed three times,
each time corresponding to a level of precedence of the
operations.

27

ARITHMATIC NOTATION
Infix Prefix Postfix
(Polish) (Reverse Polish)
EX:- A+B +AB AB+

A+B AB+ +AB
A+B-C AB+C- -—+ABC
(A+B)*(C-D) AB+CD-* *+AB-CD

28

Polish Notation

For most common arithmetic operations, the operator
symbol is placed between its two operands. For
example,

A+ B, C-D, E*F G/H

This iIs called infix notation. With this notation, we must
distinguish between

(A+B)*C and A+ (B *C)
by using either parentheses or some operator-

precedence convention such as the usual precedence
levels.

Accordingly, the order of the operators and operands in
an arithmetic expression does not uniquely determine
the order in which the operations are to be performed.

29

Polish Notation

Polish notations named after the polish mathematician Jan
Lukasiewiez, refers to the notions in which operators placed
before its two operands

For ex: + AB -CD *EF /| GH
We translate, step by step, the following infix expressions into
Polish notation using brackets [] to indicate a partial
translation:

(A+B)*C=[+AB]*C=*+ABC
A+(B*C)=A+[*BC]=+A*BC
(A+B)/(C-D)=[+AB]/[-CD]=/+AB-CD

The fundamental property of polish notation is that the order in
which the operations are to be performed is completely

determined by the positions of the operators and operands in
the expression.

Accordingly, one never needs parentheses when writing
expressions in polish notation.

30

Reverse Polish Notation

Reverse Polish Notations:-

» It refers to the notation in which the operator symbol is
placed after its two operands.

For ex: AB + CD - EF * GH/

* One never needs parentheses to determine the order of
the operations in any arithmetic expression written in the
reverse polish notation.

« The order is defined completely by the relative order of
the operands and the operators.

« This notation is frequently called postfix (or suffix)
notation, whereas prefix notation is the term used for
polish notation.

31

Evaluation of Expression

« The Computer Usually Evaluates an Arithmetic
expression written in infix notation into steps

1. First converts the expression to postfix notation
2. Evaluates the postfix expression

« Stack is the Main Tool that is Used to Accomplish

given Task.
INFIX PREFIX
(A+B)*C [+AB]*C=*+AB
A+(B*C) A+[*BC]=+A*BC

(A+B)/(C-D) [+AB]/[-CD]=/+AB-CD

Evaluation of a Postfix Expression

Algorithm 6.3
Suppose P is an arithmetic expression written in postfix notation.

The following algorithm, which uses a STACK to hold operands, evaluates P.
This algorithm finds the VALUE of an arithmetic expression P written in postfix
notation.

1.
2.

Add right parenthesis “)” at the end of P. [This acts as sentinel]

Scan P from left to right and repeat steps 3 and 4 for each element of P until
the sentinel)" is encountered.

If an operand is encountered, put it on STACK.
If an operator © is encountered, then:

a. Remove the two top elements of STACK, where A is the top element
and B is the next-to-top element.

Evaluate B O A.
Place the result of (b) back on STACK.
[End of If structure]
[End of step 2 loop]
Set VALUE equal to the top element on STACK.,
Exit. 33

Evaluation of a Postfix Expression

« Algorithm 6.3

« If Pis an arithmetic expression written in postfix notation. This
algorithm uses STACK to hold operands, and evaluate P.

Algorithm: This algorithm finds the VALUE of P written in postfix notation.

Add a Dollar Sign "$" at the end of P. [This acts as sentinel.]
Scan P from left to right and repeat Steps 3 and 4 for each element of P
until the sentinel "$" is encountered.
If an operand is encountered, put it on STACK.
If an operator © is encountered, then:
a) Remove the two top elements of STACK, where A is the top
element and B is the next-to—top-element.
b) Evaluate B © A.
c) Place the result of (b) back on STACK.
[End of If structure.]
[End of Step 2 loop.]
5. Set VALUE equal to the top element on STACK.
6. Exit.

M =

bW

34

Example

Following is an infix arithmetic expression
(5+2)*3-8/4
And its postfix is:
52 +3 * 84/-
Now add “)” at the end of expression as a sentinel.
52 +3 *84/-)

35

Example

52 +3 *84/-)

Scanned |Stack Action to do
Elements
(1) |5 5 Pushed on stack
(2) |2 5,2 Pushed on Stack
3) |+ 7 Remove the two top elements and calculate 5+ 2 and
push the result on stack
(4) |3 7,3 Pushed on Stack
5) |* 21 Remove the two top elements and calculate 7 * 3 and
push the result on stack
(6) |8 21, 8 Pushed on Stack
(7) |4 21, 8, 4 |Pushed on Stack
8) |/ 21, 2 Remove the two top elements and calculate 8 / 4 and
push the result on stack
(9 |- 19 Remove the two top elements and calculate 21 - 2 and
push the result on stack
(10) |) 19 Sentinel) encounter , Result is on top of the STACK

Example 6.5

Consider the following arithmetic expression P written in postfix
notation:

P. 5 6 2+ * 12, 4, [, -
P. 5 6 2+ * 12, 4, [/, -)

P~ (D), @, @), @),), (©), () (1) 9)(10)

Symbol Scanned STACK
(1) -8 >
(2) 6 5,6
) Y - 5.0, 4
4y + o 8
(5) = 40
(6). 12 40, 12
(7) 4 40, 12, 4
(&) - 40, 3
{9)x ol

(10))

Fig. 6-7 37

Transforming Infix Expressions into Postfix
Expressions

Algorithm 6.4 POLISH(Q, P)
Suppose Q is an arithmetic expression written in infix notation.
This algorithm finds the equivalent postfix expression P.

Algorithm: Infix_to_PostFix(Q, P)
Suppose Q is an arithmetic expression written in infix notation. This
algorithm finds the equivalent postfix expression P.
Push "(" onto STACK, and add ")" to the end of Q.
Scan Q from left to right and repeat Steps 3 to 6 for each element of Q until
the STACK is empty:
If an operand is encountered, add it to P.
If a left parenthesis is encountered, push it onto STACK.
If an operator © is encountered, then:
a) Repeatedly pop from STACK and add to P each operator
(on the top of STACK) which has the same or
higher precedence/priority than ©
b) Add © to STACK.
[End of If structure.]
6. If a right parenthesis is encountered, then:
a) Repeatedly pop from STACK and add to P each operator (on the

top of STACK) until a left parenthesis is encountered.
b) Remove the left parenthesis. [Do not add the left parenthesis to P.]

[End of If structure.]
[End of Step 2 loop.]
7. Exit.

Nnaw NMe

38

Transforming Infix into Postfix

The following Algorithm Transforms the Infix Expression Q
Into its Equivalent Postfix Expression P

The Algorithm uses a STACK to Temporarily Hold
Operators and Left Parentheses.

The Postfix Expression P will be Constructed from Left to
Right using the Operands and Left Parentheses.

The Postfix Expression P will be Constructed from Left to
Right using the Operands from Q and the Operators which
are Removed from STACK

We begin by Pushing a Left Parenthesis onto STACK and
Adding Right Parentheses at the End of Q

The Algorithm is Completed when STACK is Empty.

Transforming Infix Expressions into Postfix

Expressions
1. Push “(" onto STACJK, and add “)” to the end of Q.

2. Scan Q from left to right and repeat steps 3 to 6 for each element of
Q until the STACK is empty.

3. If an operand is encountered, add it to P.
4. If a left parenthesis is encountered, push it onto STACK.

5. If an operator © is encountered, then:

a. Repeatedly pop from STACK and add to P each operator (on the top of
STACK) which has the same precedence as or higher precedence than ©.

b. Add O to STACK.
[End of If structure]

6. If a right parenthesis is encountered, then:

a. Repeatedly POP from STACK and add to P each operator (on the top of
STACK) until a left parenthesis is encountered.

b. Remove the left parenthesis. [Do not add it to P]
[End of If structure]
[End of step 2 loop]
7. Exit.

40

Example

» Consider the following arithmetic infix expression Q:

QA+(B*C-(D/ETF)*G)*H

» Convert Q: A+(B*C-(D/EMF)*G)*Hinto
postfix form showing stack status .

» Now add “)” at the end of expression

» A+(B*C-(D/E"F)*G)*H)

» and also Push a “(* on Stack.

41

Example

A+(B*C—(D/EAF)*G)*H)

Symbol Scanned Stack Expression Y
(
(1) |A (A
(2) + (+ A
3) I((+(A
(4) B (+(AB
(5) [|* (+(* AB
(6) C (+(* ABC
(7) - (+(- ABC*
8) |((+(=(ABC*
(9) D (+(-(ABC*D
(10) |/ (+(-(/ ABC*D
(11) |E (+(-(/ ABC*DE
(12) |~ (+(-(/™ ABC*DE
(13) |F (+(-(/™ ABC*DEF
(14) |) (+(- ABC*DEF~/
(15) | * (+(-* ABC*DEF~/
(16) |G (+(-* ABC*DEF/N/G
(17) |) (+ ABC*DEFAN/G**
(18) |(+ * ABC*DEF~/G*H
(19) |(+* ABC*DEF~/G*-H
(20) |) empty ABC*DEF~ /G*-H*+

,The elements of Q have now been labeled from left to right for easy referen@e Figure 6- 8 shows the status of. :
STACK and of the string P as each element of Q is scanned. Observe that \

(L Each operand is snmply added to P and does not change STACK ‘
(2) The subtraction operator (—) in row 7 sends * from STACK to P before it (—) is pushed onto STACK i
(3) The right parenthesis in row 14 sends 1 and then / from STACK to P, and then removes the left
| parenthe51s from the top of STACK. . ,
(4) The right parenthesis in row 20 sends * and then + from STACK to P, and then removes the left
parenthesis from the top of STACK. ' \ | ‘

‘After Step 20 is executed the STACK is empty and
T KRR P K B C *» D EF T G * - H » +

Wthh is the required postfix equlvalen_t of Q.

43

Quick Sort An Stacks Application

Quick Sort An Stacks Application

Quick Sort works on Divide and Conquer Rule

Quick Sort Strategy is to Divide a List or Set into
Two Sub-Lists or Sub-Sets.

Pick an Element, Called a Pivot, from the List.

Reorder the List so that all Elements which are Less
than the Pivot come Before the Pivot and so that
All Elements Greater than the Pivot come After it.
After this Partitioning, the Pivot is in its Final
Position. This is called the Partition operation.

Recursively Sort the Sub-List of Lesser Elements
and the Sub-List of Greater Elements.

>

Quicksort: An application of Stacks

Let A be a list of n data items. “Sorting A” refers to the operation of
rearranging the elements of A so that they are in some logical order,
such as numerically ordered when A contains numerical data, or
alphabetically ordered when A contains character data.

Quicksort is an algorithm of the divide and conqguer type. That is, the
problem of sorting a set is reduced to the problem of sorting two
smaller sets.

Suppose A is the following list of 12 numbers.

> @4) 33, 11, 55, 77, 90, 40, 60, 99, |22, 88, (66)

>

The reduction step of the quicksort algorithm finds the final position
of one of the numbers; in this illustration, we use the first number,
44. this is accomplished as follows. Beginning with the last number,
66, scan the list from right to left, comparing each number with 44
and stopping at the first number less than 44. The number is 22.
Interchange 44 and 22 to obtain the list:

46

Quicksort: An application of Stacks

»>©@2) 33 11, |55 77, 90, 40, 60, 99, @4) 838 66

>

YV VYV

YV VYV

(Observe that the numbers 88 and 66 to the right of 44 are each
greater than 44). Beginning with 22, next scan the list in the opposite
direction, from left to right, comparing each number with 44 and
stopping at the first number greater than 44. the number is 55.
Interchange 44 and 55 to obtain the list:

22, 33, 11, @4) 77, 90, |40/ 60, 99,(55) 88, 66

(Observe that the numbers 22, 33, and 11 to the left of 44 are each
less than 44). Beginning this time with 55, now scan the list in the
original direction, from right to left, until meeting the first number less
than 44. It is 40. Interchange 44 and 40 to obtain the list:

22, 33, 11, 77.1 90, @4) 60, 99, 55, 88, 66

(Again, the numbers to the right of 44 are each greater than 44.)
Beginning with 40, scan the list from left to right. The first number
greater than 44 is 77. Interchange 44 and 77 to obtain the list:

47

Quicksort: An application of Stacks

22, 33, 11, 40, @4) 90, 77, 60, 99, 55, 88, 66

(Again, the numbers to the left of 44 are each less than 44.)
Beginning with 77, scan the list from right to left seeking a number
less than 44. we do not meet such a number before meeting 44. this
means all the numbers have been scanned and compared with 44.
furthermore, all numbers less than 44 now form the sublist of
numbers to the left of 44, and all numbers greater than 44 now form
the sublist of numbers to the right of 44.

22, 33, 11, 40, 44, 90, 77, 60, 99, 55, 88, 66
) \)

\% Y
First Subset Second Subset

Thus 44 is correctly placed in its final position, and the task of
sorting the original list A has now been reduced to the task of sorting
each of the above sublists.

48

The above reduction step is repeated with each subhs&Qontammg 2 or more elements Since we can

process only one sublist at a time, we must be able to ke f' irack of some sublists fér future processing.

| - This is accomphshed by using two stacks, called LOW. and UPPER, to temﬁorarlly “hold” such

sublists. That is, the addresses of the first and last elements of each sublist, called its boundary values,

are pushed onto the stacks LOWER and UPPER, respectlvely, and the reduction step is applied to a
sublist only after its boundary values are removed from the stacks. The followmg example 1llustrates

' the way the stacks LOWER and UPPER are used

49

Consider the above list A with 7 = 12 elements. The algonthm begms by pushmg the boundary values 1 and
12 of A onto the stacks to yield ,

LOWER: i . ‘UPPER: -12..
: In order to appt y the 1educt10n step, the algortthm ﬁrst‘removes the top values 1 and 14 from the etacks leavmg %
e LOWER: (empty) UPPER: (empty) :

and then ‘applies the rednetion step to the .chresponding hst'A[l], AR s 55 A[12].-The reduction Ste'p, 'es, '
- executed above, finally places the first element, 44, in A[5]. Accordingly, the algorithm pushes the boundary
values 1 and 4 of the first subhst and the boundary values 6 and 12 of the second sublist onto the stacks to yleld AP
.~ LOWER: 1,6 UPPER 4,12 e ‘

In order to apply the reductlon step agaln the algorlthm removes the top values 6and 12, from the stacke leavmg‘:v ‘
‘ / e T oWERy 1 UPPER: 4 e

and then apphes the reducnon step to the correspondmg sublist A[6] A[7], » Av[12] The reduction step
changes this list as in Fig. 6-9. Observe that the second sublist has only one element Accordmgly, the algortthm
pushes only the boundaly values 6 and 10 of the ﬁrst subhst onto the stacks to yleld . i

_ LOWER. 1,6 UPPER 4 10

50

Example 6.7

e Boundary Values :
— Address of the First and Last values of Sub-List

_.ower 1 Upper 12
_Lower Empty Upper Empty
_ower 1,6 UJpper 4,12
_ower 1,6 UJpper 4,10

Example 6.7

And so on. The algorithm ends when the stack do not
contain any sublist to be processed by the reduction
step.

A[6] A[7] A[8] A[9] A[10] A[11] A[12]

(90)77 60 99 55 88 (66)

66 77 60(99)55 88 (90)
66 77 60(90)55 (88) 99

66 77 60 88 55(90) 99
First Sub-List Second Sub-List

52

Procedure 6.5 QUICK (A, N, BEG, END, LOC)

» Here Als an array with N elements parameters BEG &
END contain the boundary value of sublist of Ato
which this procedure applies.

» LOC keeps track of the position of the first element
A[BEG] of the sublist during the procedure.

» The local variables LEFT & RIGHT will contain the
boundary values of the list of elements that have not
been scanned.

Procedure 6.5 QUICK (A, N, BEG, END, LOC)

A : Name of Array

N : Number of Elements

BEG : Beginning Boundary Value

END : Ending Boundary Value

LOC : Position of the First Element A[BEG]

Local Variables : boundary values of the list of
elements that have not been scanned

— LEFT
— RIGHT

Procedure 6.5 QUICK (A, N, BEG, END, LOC)

Step 1. [Initialize] Set LEFT := BEG, RIGHT := END and LOC := BEG
Step 2. [Scan from Right to Left]
a) Repeat while A[LOC] <= A[RIGHT]
RIGHT .= RIGHT -1
[End of Loop]
b) If LOC = RIGHT, then : Return
c) If A[LOC]>A[RIGHT] ,then:
1) [Interchange A [LOC] and A[RIGHT]]
TEMP = A[LOC],
A[LOC] = A[RIGHT],
A[RIGHT]=TEMP
2) Set LOC = RIGHT
3) Go to Step 3
[End of If Structure]

Procedure 6.5 QUICK (A, N, BEG, END, LOC)

Step 3. [Scan from Left to Right]
a) Repeat while A[LEFT] <= A[LOC]

LEFT :=LEFT +1

[End of Loop]
b) If LOC = LEFT, then : Return
c) IfA[LEFT] > A[LOC] ,then:

1) [Interchange A [LEFT] and A[LOC]]
TEMP := A[LOC], A[LOC] = A[LEFT],
A[LEFT]=TEMP

2) Set LOC := LEFT

3) Go to Step 2

[End of If Structure]

Procedure 6.6: Quicksort algorithm

[Initialize] TOP :=0

[PUSH Boundary values of A onto Stacks when 2 or More Elements]

If N> 1, then TOP:=TOP+1, LOWER[1]:=1, UPPER[1]:=N

Repeat Steps 4 to 7 while TOP 1=0

[Pop Sub-List from Stacks]

Set BEG ;= LOWER[TOP] , END := UPPER[TOP]

TOP:=TOP-1

Call QUICK (A, N, BEG, END, LOC)

[Push Left Sub-List onto Stacks when 2 or More Elements]
If BEG<LOC-1thenTOP:=TOP + 1, LOWER][TOP] := BEG,
UPPER|[TOP] := LOC -1 [End of If Structure]

[Push Right Sub-List onto Stacks when 2 or More Elements]
If LOC + 1 <END then TOP :=TOP + 1, LOWER[TOP] :=LOC + 1,
UPPER[TOP] := END [End of If Structure] [End of Step 3 Loop]

[EXit] (Quick Sort)

The running time of a sorting algorithm is usually measured by the number f(n) of comparisons
required to sort n elements. The quicksort algorithm, which has many variations, has been studied
extensively. Generally speaking, the algorithm has a worst-case running time of order #n*/2, but an
average-case running time of order n log #. The reason for this is indicated below.

The worst case

The worst case occurs when the list is already sorted. Then the first element will require n
comparisons to recognize that it remains in the first position. Furthermore, the first sublist will be
empty, but the second sublist will have n — 1 elements. Accordingly, the second element will require
n — 1 comparisons to recognize that it remains in the second position. And so on. Consequently, there

will be a total of :

fmy=n+(mn—-1)+--- +2+1—-’—1—@—2i2 2-i-O(rz) o(n*)

comparisons. Observe that this is equal to the complexity of the bubble sort aAlgorithmA(Sec. 4.6).

58

The average case

. The complexity f(n) = O(n log n) of the average case comes from the fact that on the average,
each reduction step of the algorithm produces two sublists. Accordingly:

(1) Reducing the initial list places 1 element and produces two sublists.

(2) Reducing the two sublists places 2 elements and produces four sublists.

(3) Reducing the four sublists places 4 elements and produces eight sublists.

(4) Reducing the eight sublists places 8 elements and produces sixteen sublists.
And so on. Observe that the reduction step in the kth level finds the location of 2~ elements; hence
there will be approximately log, n levels of reductions steps. Furthermore, each level uses at most n

comparisons, so f(n) = O(n log n). In fact, mathematlcal analysis and empirical evidence have both
shown that , \

f(n)y=1.4[nlogn]

is the expected number of comparisons for the quicksort algorithm.

59

