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6.1 Introduction
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Linear list and linear array allowed one to insert

and delete elements at any place in the list

(Beginning, end or middle).

6.1 Introduction 

Stack: Last-in first-out (LIFO)

Queue: First-in first-out (FIFO)
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Stacks are important in compilers and operating 

systems: Insertions and removals are made only at 

one end of a stack—its top.

Queues represent waiting lines; insertions are made 

at the back (also referred to as the tail) of a queue 

and removals are made from the front (also 

referred to as the head) of a queue.

6.1 Introduction 
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 A Stack is a list of elements in which an element may be 

inserted or deleted only at one end, called the top of the 

stack. The other end is called the bottom.

 This means, in particular, that elements are removed from

a stack in the reverse order of that in which they were

inserted into the stack.

 Special terminology is used for two basic operations

associated with stacks.

 “Push” is the term used to insert an element into a stack.

 “Pop” is the term used to delete an element from a stack.
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6.2 Stacks



6.2 Stacks

9

 An item may be added or removed only from the top of a 

stack. This means, in particular, that the last item to be 

added to a stack is the first item to be removed. 

Accordingly, stacks are also called last-in first-out (LIFO) 

lists.



 Suppose the following 6 elements are pushed, in order, 

onto an empty stack: AAA, BBB, CCC, DDD, EEE, FFF
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Example 6.1
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Example 6.1
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Application of a stack

(i) Conversion of infix to postfix form 

(ii) Reversing of a line.

(iii)Removal of recursion

(iv)Evaluating post fix expression
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application of STACK :- Postponed Decisions 

Fig. 6-4

• Stacks are frequently used to indicate the order

of the processing of data when certain steps of

the processing must be postponed until other

conditions are fulfilled.



 Stacks may be represented in the computer in various 

ways, usually by means of a one-way list or a linear 

array.

 Our stack is maintained by a linear array STACK: a 

pointer variable TOP, which contains the location of the 

top element of the stack; and a variable MAXSTK which 

gives the maximum number of elements that can be held 

by the stack. 

 The condition TOP = 0 or TOP = NULL will indicate that 

the stack is empty.
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6.3 Array Representation of Stacks



• Figure pictures such an array representation of a stack. 

• Since TOP = 3, the stack has three elements, XXX, YYY and ZZZ; 

and since MAXSTK = 8, there is room for 5 more items in the stack.
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XXX YYY ZZZ

1 2 3 4 5 6 7 8

TOP

STACK

MAXSTK

Array Representation of Stacks



Procedure 6.1: 

PUSH(STACK, TOP, MAXSTK, ITEM)

This procedure pushes an ITEM onto a stack.

1. [Stack already filled?]

If TOP = MAXSTK, then: Print: OVERFLOW, and Return.

2. Set TOP = TOP + 1 [Increases TOP by 1]

3. Set STACK[TOP] = ITEM [Inserts ITEM in new TOP position]

4. Return.
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Adding (Pushing) an item onto stack



Procedure 6.2: 

POP(STACK, TOP, ITEM)

This procedure deletes the top element of STACK and assigns 

it to the variable ITEM.

1. [STACK has no item to be removed?]

If TOP = 0, then: Print: UNDERFLOW, and Return.

2. Set ITEM = STACK[TOP] [Assigns TOP element to ITEM]

3. Set TOP = TOP – 1 [Decreases TOP by 1]

4. Return.
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Removing (Popping) an item from a stack
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Example 6.2 

XXX YYY ZZZ WWW

1 2 3 4 5 6 7 8

TOP

STACK

MAXSTK

XXX YYY ZZZ

1 2 3 4 5 6 7 8

TOP

STACK

MAXSTK

1. Since TOP=3, control is transferred to Step2. 

2. TOP=3+1=4.

3. STACK[TOP]=STACK[4]=WWW

4. Return.

Note that WWW is now the top element in the stack.

(a) Consider the following stack. Simulate the operation PUSH(STACK,WWW) 
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Example 6.2 

XXX YYY

1 2 3 4 5 6 7 8

TOP

STACK

MAXSTK

XXX YYY ZZZ

1 2 3 4 5 6 7 8

TOP

STACK

MAXSTK

(b) Consider the following stack. Simulate the operation POP(STACK,ITEM) 

1. Since TOP=3, control is transferred to Step2.

2. ITEM=ZZZ 

3. TOP=3-1=2.

4. Return.

Observe that STACK[TOP]=STACK[2]=YYY is now the top element in the stack.
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Example 

Suppose the following 6 elements are pushed , in order , onto 

an empty stack :

• AAA, BBB , CCC ,DDD , EEE , FFF
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Stacks
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Push Operation 
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Pop Operation 
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Minimizing Overflow

 Difference between underflow and overflow in dealing 

with stack

 Underflow depends upon the given algorithm and the 

given data hence no direct control by the programmer.

 Overflow depends upon the arbitrary choice of the 

programmer for the amount of memory space reserved 

for the stack and this choice does influence the number 

of times overflow may occur 
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Example 6.3 



• Let Q be in arithmetic expression involving constants and 

operations. 

• Discuss an algorithm which finds the value of Q by using 

reverse polish (postfix) notation. 

• Stack is an essential tool in this algorithm.

• Binary operations in Q may have different levels of 

precedence. 

• Specifically, we assume the following three levels of 

precedence for the usual five binary operations. 

• Highest: Exponentiation (↑)

• Next highest: Multiplication (*) & Division (/)

• Lowest: Addition (+) & Subtraction (-)
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6.4 Arithmetic Expressions; Polish Notation



• Suppose we want to evaluate the following parenthesis 

free arithmetic expression:

• 2 ↑ 3 + 5 * 2 ↑ 2 – 12 / 6

• First we evaluate the exponentiations to obtain

• 8 + 5 * 4 – 12 / 6

• Then we evaluate the multiplication and division to 

obtain 8 + 20 – 2.

• Last, we evaluate the addition and subtraction to obtain 

the final result, 26. 

• Observe that the expression is traversed three times,

each time corresponding to a level of precedence of the

operations.
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Example 6.4
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Infix ,  postfix  and  prefix notations



• For most common arithmetic operations, the operator 

symbol is placed between its two operands. For 

example,

• A + B, C – D, E * F, G / H

• This is called infix notation. With this notation, we must 

distinguish between

• (A + B) * C and A + (B * C)

by using either parentheses or some operator-

precedence convention such as the usual precedence 

levels.

• Accordingly, the order of the operators and operands in 

an arithmetic expression does not uniquely determine 

the order in which the operations are to be performed.
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Polish Notation



• Polish notations named after the polish mathematician Jan 

Lukasiewiez, refers to the notions in which operators placed 

before its two operands 

• For ex: + AB - CD * EF / GH

• We translate, step by step, the following infix expressions into 

Polish notation using brackets [ ] to indicate a partial 

translation:

• (A + B) * C = [+ AB] * C = * + ABC

• A + (B * C) = A + [* BC] = + A * BC

• (A + B)/(C – D) = [+ AB] / [- CD] = / + AB – CD

• The fundamental property of polish notation is that the order in 

which the operations are to be performed is completely 

determined by the positions of the operators and operands in 

the expression. 

• Accordingly, one never needs parentheses when writing 

expressions in polish notation.
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Polish Notation



Reverse Polish Notations:-

 it refers to the notation in which the operator symbol is 

placed after its two operands.

For ex: AB + CD - EF * GH /

• One never needs parentheses to determine the order of 

the operations in any arithmetic expression written in the 

reverse polish notation. 

• The order is defined completely by the relative order of 

the operands and the operators. 

• This notation is frequently called postfix (or suffix) 

notation, whereas prefix notation is the term used for 

polish notation.
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Reverse Polish Notation



• The Computer Usually Evaluates an Arithmetic 

expression written in infix notation into steps

1. First converts the expression to postfix notation

2. Evaluates the postfix expression

• Stack is the Main Tool that is Used to Accomplish 

given Task.

INFIX PREFIX

( A + B ) * C [ + A B ] * C = * + A B 

A + ( B * C ) A + [ * B C ] = + A * B C

( A + B ) / ( C – D ) [+ AB] / [- CD] = / + AB-CD

Evaluation of Expression



Algorithm 6.3 

Suppose P is an arithmetic expression written in postfix notation. 

The following algorithm, which uses a STACK to hold operands, evaluates P. 

This algorithm finds the VALUE of an arithmetic expression P written in postfix 

notation.

1. Add right parenthesis “)” at the end of P. [This acts as sentinel]

2. Scan P from left to right and repeat steps 3 and 4 for each element of P until 

the sentinel “)” is encountered.

3. If an operand is encountered, put it on STACK.

4. If an operator Θ is encountered, then:

a. Remove the two top elements of STACK, where A is the top element 

and B is the next-to-top element.

b. Evaluate B Θ A.

c. Place the result of (b) back on STACK.

[End of If structure]

[End of step 2 loop]

5. Set VALUE equal to the top element on STACK.

6. Exit. 33

Evaluation of a Postfix Expression



• Algorithm 6.3 

• If P is an arithmetic expression written in postfix notation. This 

algorithm uses STACK to hold operands, and evaluate P.
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Evaluation of a Postfix Expression



Following is an infix arithmetic expression

(5 + 2) * 3 – 8/ 4

And its  postfix is:

5 2  + 3  *  8 4 / –

Now add “)”  at the end of expression as a sentinel.

5 2  + 3  * 8 4 / – )

35

Example
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Example

Scanned 

Elements

Stack         Action to do 

(1) 5 5 Pushed on stack

(2) 2 5, 2 Pushed on Stack

(3) + 7 Remove the two top elements and calculate  5 + 2  and 

push the result on stack

(4) 3 7, 3 Pushed on Stack

(5) * 21 Remove the two top elements and calculate    7 *  3 and 

push the result on stack

(6) 8 21,    8 Pushed on Stack

(7) 4 21,   8,   4 Pushed on Stack

(8) / 21,    2 Remove the two top elements and calculate  8  /  4 and 

push the result on stack

(9) - 19 Remove the two top elements and calculate 21 - 2 and 

push the result on stack

(10) ) 19 Sentinel  ) encounter , Result   is on top of the STACK

5 2  + 3  * 8 4 / – )



Consider the following arithmetic expression P written in postfix 

notation:

P: 5, 6, 2, +, *, 12, 4, /,     -

P: 5, 6, 2, +, *, 12, 4, /,     -,     )

P:     (1),       (2),     (3),     (4),      (5),       (6),    (7),    (8),  (9), (10)

37

Example 6.5 



Algorithm 6.4   POLISH(Q, P)

Suppose Q is an arithmetic expression written in infix notation. 

This algorithm finds the equivalent postfix expression P.
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Transforming Infix Expressions into Postfix 

Expressions



• The following Algorithm Transforms the Infix Expression Q

into its Equivalent Postfix Expression P

• The Algorithm uses a STACK to Temporarily Hold 

Operators and Left Parentheses.

• The Postfix Expression P will be Constructed from Left to 

Right using the Operands and Left Parentheses. 

• The Postfix Expression P will be Constructed from Left to 

Right using the Operands from Q and the Operators which 

are Removed from STACK

• We begin by Pushing a Left Parenthesis onto STACK and 

Adding Right Parentheses at the End of Q

• The Algorithm is Completed when STACK is Empty.

Transforming Infix into Postfix



1. Push “(” onto STACJK, and add “)” to the end of Q.

2. Scan Q from left to right and repeat steps 3 to 6 for each element of 

Q until the STACK is empty.

3. If an operand is encountered, add it to P.

4. If a left parenthesis is encountered, push it onto STACK.

5. If an operator Θ is encountered, then:

a. Repeatedly pop from STACK and add to P each operator (on the top of 

STACK) which has the same precedence as or higher precedence than Θ.

b. Add Θ to STACK.

[End of If structure]

6. If a right parenthesis is encountered, then:

a. Repeatedly POP from STACK and add to P each operator (on the top of 

STACK) until a left parenthesis is encountered.

b. Remove the left parenthesis. [Do not add it to P]

[End of If structure]

[End of step 2 loop]

7. Exit.
40

Transforming Infix Expressions into Postfix 

Expressions



 Consider the following arithmetic infix expression Q:

Q:A + ( B * C – ( D / E ↑ F ) * G ) * H

 Convert Q: A+( B * C – ( D / E ^ F ) * G ) * H into 

postfix form showing stack status .

 Now add “)”  at the end of expression 

 A+( B * C – ( D / E ^ F ) * G ) * H )

 and also  Push a “(“  on Stack.

41

Example
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Example

Symbol Scanned Stack Expression Y
(

(1) A ( A
(2) + (+ A
(3) ( (+( A
(4) B (+( AB
(5) * (+(* AB
(6) C (+(* ABC
(7) - (+(- ABC*
(8) ( (+(-( ABC*
(9) D (+(-( ABC*D
(10) / (+(-(/ ABC*D
(11) E (+(-(/ ABC*DE
(12) ^ (+(-(/^ ABC*DE
(13) F (+(-(/^ ABC*DEF
(14) ) (+(- ABC*DEF^/
(15) * (+(-* ABC*DEF^/
(16) G (+(-* ABC*DEF^/G
(17) ) (+ ABC*DEF^/G**
(18) ( +* ABC*DEF^/G*H
(19) ( +* ABC*DEF^/G*-H
(20) ) empty ABC*DEF^/G*-H*+

A+( B * C – ( D / E ^ F ) * G ) * H )
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Example



Quick Sort An Stacks Application



• Quick Sort works on Divide and Conquer Rule

• Quick Sort Strategy is to Divide a List or Set into 
Two Sub-Lists or Sub-Sets. 

• Pick an Element, Called a Pivot, from the List. 

• Reorder the List so that all Elements which are Less 
than the Pivot come Before the Pivot and so that 
All Elements Greater than the Pivot come After it. 
After this Partitioning, the Pivot is in its Final 
Position. This is called the Partition operation. 

• Recursively Sort the Sub-List of Lesser Elements 
and the Sub-List of Greater Elements. 

Quick Sort An Stacks Application



 Let A be a list of n data items. “Sorting A” refers to the operation of 

rearranging the elements of A so that they are in some logical order, 

such as numerically ordered when A contains numerical data, or 

alphabetically ordered when A contains character data.

 Quicksort is an algorithm of the divide and conquer type. That is, the 

problem of sorting a set is reduced to the problem of sorting two 

smaller sets. 

 Suppose A is the following list of 12 numbers.

 44,   33,   11,   55,   77,   90,   40,   60,   99,   22,   88,   66

 The reduction step of the quicksort algorithm finds the final position 

of one of the numbers; in this illustration, we use the first number, 

44. this is accomplished as follows. Beginning with the last number, 

66, scan the list from right to left, comparing each number with 44 

and stopping at the first number less than 44. The number is 22. 

interchange 44 and 22 to obtain the list:
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Quicksort: An application of Stacks



 22,   33,   11,   55,   77,   90,   40,   60,   99,   44,   88,   66

 (Observe that the numbers 88 and 66 to the right of 44 are each 

greater than 44). Beginning with 22, next scan the list in the opposite 

direction, from left to right, comparing each number with 44 and 

stopping at the first number greater than 44. the number is 55. 

interchange 44 and 55 to obtain the list:

 22,   33,   11,   44,   77,   90,   40,   60,   99,   55,   88,   66

 (Observe that the numbers 22, 33, and 11 to the left of 44 are each 

less than 44). Beginning this time with 55, now scan the list in the 

original direction, from right to left, until meeting the first number less 

than 44. It is 40. Interchange 44 and 40 to obtain the list:

 22,   33,   11,   40,   77,   90,   44,   60,   99,   55,   88,   66

 (Again, the numbers to the right of 44 are each greater than 44.) 

Beginning with 40, scan the list from left to right. The first number 

greater than 44 is 77. Interchange 44 and 77 to obtain the list:
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Quicksort: An application of Stacks



• 22,   33,   11,   40,   44,   90,   77,   60,   99,   55,   88,   66

• (Again, the numbers to the left of 44 are each less than 44.)

Beginning with 77, scan the list from right to left seeking a number

less than 44. we do not meet such a number before meeting 44. this

means all the numbers have been scanned and compared with 44.

furthermore, all numbers less than 44 now form the sublist of

numbers to the left of 44, and all numbers greater than 44 now form

the sublist of numbers to the right of 44.

• 22, 33, 11, 40, 44, 90, 77, 60, 99, 55, 88, 66

• Thus 44 is correctly placed in its final position, and the task of

sorting the original list A has now been reduced to the task of sorting

each of the above sublists.

48

First Subset Second Subset

Quicksort: An application of Stacks
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Quicksort: An application of Stacks
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Example 6.7



• Boundary Values :

– Address of the First and Last values of Sub-List  

Lower 1 Upper 12

Lower Empty Upper Empty

Lower 1,6 Upper 4,12

Lower 1,6 Upper 4,10

Example 6.7
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Example 6.7

And so on. The algorithm ends when the stack do not 

contain any sublist to be processed by the reduction 

step.

A[6] A[7] A[8] A[9] A[10] A[11] A[12] 

90 77  60  99  55  88   66

66  77  60  99  55  88   90

66  77  60  90  55  88   99

66  77  60  88  55 90   99

First Sub-List           Second Sub-List



Procedure 6.5  QUICK ( A, N, BEG, END, LOC )

Here  A is an array with N elements parameters BEG & 

END contain the boundary value of sublist of A to 

which this procedure applies.

LOC keeps track of the position of the first element 

A[BEG ] of the sublist  during the procedure. 

The local variables LEFT & RIGHT will contain the 

boundary values of the list of elements that have not 

been scanned. 



• A : Name of Array

• N : Number of Elements

• BEG : Beginning Boundary Value

• END : Ending Boundary Value

• LOC : Position of the First Element A[BEG]

• Local Variables : boundary values of the list of 
elements that have not been scanned 

– LEFT

– RIGHT

Procedure 6.5  QUICK ( A, N, BEG, END, LOC )



Step 1. [Initialize] Set LEFT := BEG, RIGHT := END and LOC := BEG

Step 2. [Scan from Right to Left]

a) Repeat while A[LOC] <= A[RIGHT]

RIGHT := RIGHT – 1

[End of Loop]

b) If LOC = RIGHT, then : Return

c) If  A[LOC] > A [RIGHT] ,then:

1) [Interchange A [LOC] and A[RIGHT] ]

TEMP := A[LOC], 

A[LOC] = A[RIGHT], 

A[RIGHT]=TEMP

2) Set LOC := RIGHT

3) Go to Step 3

[End of If Structure]

Procedure 6.5  QUICK ( A, N, BEG, END, LOC )



Step 3. [Scan from Left to Right]

a) Repeat while A[LEFT] <= A[LOC]

LEFT := LEFT + 1

[End of Loop]

b) If LOC = LEFT, then : Return

c) If A[LEFT] > A [LOC] ,then:

1) [Interchange A [LEFT] and A[LOC] ]

TEMP := A[LOC], A[LOC] = A[LEFT], 

A[LEFT]=TEMP

2) Set LOC := LEFT

3) Go to Step 2

[End of If Structure]

Procedure 6.5  QUICK ( A, N, BEG, END, LOC )



1. [Initialize] TOP := 0

2. [PUSH Boundary values of A onto Stacks when 2 or More Elements]

If N > 1, then TOP:=TOP+1, LOWER[1]:=1, UPPER[1]:=N

3. Repeat Steps 4 to 7 while TOP != 0

4. [Pop Sub-List from Stacks]

Set BEG := LOWER[TOP] , END := UPPER[TOP]

TOP := TOP -1

5. Call QUICK (A, N, BEG, END, LOC)

6. [Push Left Sub-List onto Stacks when 2 or More Elements]

If BEG < LOC - 1 then TOP := TOP + 1, LOWER[TOP] := BEG,

UPPER[TOP] := LOC – 1 [End of If Structure]

7. [Push Right Sub-List onto Stacks when 2 or More Elements]

If LOC + 1 < END then TOP := TOP + 1, LOWER[TOP] := LOC + 1,

UPPER[TOP] := END [End of If Structure] [End of Step 3 Loop]

8. [Exit] (Quick  Sort)

Procedure 6.6:  Quicksort algorithm 
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Complexity of the Quicksort algorithm 

The worst case
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Complexity of the Quicksort algorithm 

The average case
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