
Chapter 3

The Lebesgue integral

3.1 Introduction

We now turn our attention to the construction of the Lebesgue integral of general functions, which, as

already discussed, is necessary to avoid the technical deficiencies associated with the Riemann integral.

3.2 Measurable functions

3.2.1 Basic notions

The extended real number system, R, is the set of real numbers together with two symbols �1 and C1.

That is, R D R [ f�1;C1g D Œ�1;1�. The algebraic operations for these two infinities are:

[1] For r 2 R, ˙1 C r D ˙1.

[2] For r 2 R, r .˙1/ D ˙1, if r > 0 and r .˙1/ D �1 if r < 0.

[3] C1 C .C1/ D C1 and �1 C .�1/ D �1.

[4] 1 C .�1/ is undefined.

[5] 0 � .˙1/ D 0.

3.2.1 Definition

Let .X; †/ be a measurable space and E 2 †. A function f W E ! R is said to be measurable if for each

˛ 2 R, the set fx 2 E W f .x/ > ˛g is measurable.

3.2.2 Proposition

Let .X; †/ be a measurable space and E 2 †, and f ! R. Then the following are equivalent:

[1] f is measurable.

[2] For each ˛ 2 R, the set fx 2 E W f .x/ � ˛g is measurable.

[3] For each ˛ 2 R, the set fx 2 E W f .x/ < ˛g is measurable.

[4] For each ˛ 2 R, the set fx 2 E W f .x/ � ˛g is measurable.

PROOF.
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[1] ) [2]: If f is measurable, then the set

fx 2 E W f .x/ � ˛g D
\

n2N

�

x 2 E W f .x/ > ˛ � 1

n

�

;

which is an intersection of measurable sets, is measurable.

[2] ) [3]: If the set fx 2 E W f .x/ � ˛g is measurable, then so is the set

Enfx 2 E W f .x/ � ˛g D fx 2 E W f .x/ < ˛g:

[3] ) [4]: If the set fx 2 E W f .x/ < ˛g is measurable, then so is the set

fx 2 E W f .x/ � ˛g D
\

n2N

�

x 2 E W f .x/ < ˛ C 1

n

�

since it is an intersection of measurable sets.

[4] ) [1]: If the set fx 2 E W f .x/ � ˛g, is measurable, so is its complement in E. Hence,

fx 2 E W f .x/ > ˛g D Enfx 2 E W f .x/ � ˛g

is measurable. It follows from this that f is measurable.

2

3.2.3 Examples

[1] The constant function is measurable. That is, if .X; †/ is a measurable space, c 2 R, and E 2 †,

then the function f W E ! R given by f .x/ D c, for each x 2 E, is measurable.

Let ˛ 2 R. If ˛ � c, then the set fx 2 E W f .x/ > ˛g D ;, and is thus measurable.

If ˛ < c, then the set fx 2 E W f .x/ > ˛g D E, and is therefore measurable. Hence, f is

measurable.

[2] Let .X; †/ be a measurable space and let A 2 †. The characteristic function, �
A

, is defined by

�
A
.x/ D

�

1 if x 2 A

0 if x 62 A:

The characteristic function �
A

is measurable. This follows immediately from the observation that,

for each ˛ 2 R and E 2 †, the set fx 2 E W �
A
> ˛g is either E, A or ;.

[3] Let B be the Borel �-algebra in R and E 2 B. Then, any continuous function f W E ! R is

measurable. This is an immediate consequence of the fact that, if f W E ! R is continuous and

˛ 2 R, then the set fx 2 E W f .x/ > ˛g is open and hence belongs to B.

3.2.4 Proposition

[1] If f and g are measurable real-valued functions defined on a common domain E 2 † and c 2 R,

then the functions

(a) f C c,

(b) cf ,

(c) f ˙ g,

(d) f 2,
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(e) f � g,

(f) jf j,
(g) f _ g,

(h) f ^ g are also measurable.

[2] If .fn/ is a sequence of measurable functions defined on a common domain E 2 †, then the functions

(a) supn fn,

(b) infn fn,

(c) lim supn fn,

(d) lim infn fn are also measurable.

PROOF.

[1] (a) For any real number ˛,

fx 2 E W f .x/C c > ˛g � fx 2 E W f .x/ > ˛ � cg:

Since the set on the right-hand side is measurable, we have that f C c is measurable.

(b) If c D 0, then cf is obviously measurable. Assume that c < 0. Then, for each real number ˛,

fx 2 E W cf .x/ > ˛g D
�

x 2 E W f .x/ < ˛

c

�

:

Since the set fx 2 E W f .x/ < ˛
c
g is measurable, it follows that cf is also measurable.

(c) Let ˛ be a real number. Since the rationals are dense in the reals, there is a rational number r

such that

f .x/ < r < ˛ � g.x/;

whenever f .x/C g.x/ < ˛. Therefore,

fx 2 E W f .x/C g.x/ < ˛g D
[

r2Q

.fx 2 E W f .x/ < r g \ fx 2 E W g.x/ < ˛ � r g/:

Since the sets fx 2 E W f .x/ < r g and fx 2 E W g.x/ < ˛ � r g are measurable, so is the set

fx 2 E W f .x/ < r g \ fx W g.x/ < ˛ � r g, and consequently, the set fx 2 E W f .x/C g.x/ <

˛g, being a countable union of measurable sets, is also measurable.

If g is measurable, it follows from (b) that .�1/g is also measurable. Hence, so is f C.�1/g D
f � g.

(d) Let ˛ 2 R and E 2 †. If ˛ < 0, then fx 2 E W f 2.x/ > ˛g D E, which is measurable.

If ˛ � 0, then

fx 2 E W f 2.x/ > ˛g D fx 2 E W f .x/ >
p
˛g [ fx 2 E W f .x/ < �

p
˛g:

Since the two sets on the right hand side are measurable, it follows that the set fx 2 E W
f 2.x/ > ˛g is also measurable. Hence f 2 is measurable.

(e) Since f � g D 1
4
Œ.f C g/2 � .f � g/2�, it follows from (b), (c), and (d) that f � g is measurable.

(f) Let ˛ 2 R and E 2 †. If ˛ < 0, then fx 2 E W jf .x/j > ˛g D E, which is measurable.

If ˛ � 0, then

fx 2 E W jf .x/j > ˛g D fx 2 E W f .x/ > ˛g [ fx 2 E W f .x/ < �˛g:

Since the two sets on the right hand side are measurable, it follows that the set fx 2 E W
f .x/2 > ˛g is also measurable. Thus, jf j is measurable.
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(g) It is sufficient to observe that f _ g D 1
2
ff C g C jf � gjg. It now follows from (b), (c), and

(d) that f _ g is measurable.

(h) It is sufficient to observe that f ^ g D 1
2
ff C g � jf � gjg. It now follows from (b), (c), and

(d) that f ^ g is measurable.

[2] (a) Let ˛ 2 R. Then

fx 2 E W sup
n
fn > ˛g D

1
[

nD1

fx 2 E W fn.x/ > ˛g:

Since for each n 2 N, fn is measurable, it follows that the set fx 2 E W fn.x/ > ˛g is

measurable for each n 2 N. Therefore, the set fx 2 E W supn fn.x/ > ˛g is measurable as it is

a countable union of measurable sets.

(b) It is sufficient to note that infn fn D � supn.�fn/.

(c) Notice that lim supn fn D infn�1

�

supk�n fk

�

and use (a) and (b) above.

(d) Notice that lim infn fn D supn�1

�

infk�n fk

�

and use (a) and (b) above.

2

3.2.5 Corollary

Let .X; †/ be a measurable space. If f is a pointwise limit of a sequence .fn/ of measurable functions

defined on a common domain E 2 †, then f is measurable.

PROOF.

If the sequence .fn/ converges pointwise to f , then, for each x 2 E,

f .x/ D lim
n!1

fn.x/ D lim sup
n

fn.x/:

Now, by Proposition 3.2.4 [2], f is measurable.

2

3.2.6 Definition

Let f be a real-valued function defined on a set X . The positive part of f , denoted by f C, is the function

f C D maxff; 0g D f _0 and the negative part of f , denoted by f �, is the function f � D maxf�f; 0g D
.�f / _ 0.

Immediately we have that if f is a real-valued function defined on X , then

f D f C � f � and jf j D f C C f �:

Note that

f C D 1

2
Œjf j C f � and f � D 1

2
Œjf j � f �:

Let .X; †/ be a measurable space and f W X ! R. It is trivial to deduce from Proposition 3.2.4 that f is

measurable if and only if f C and f � are measurable.

3.2.7 Definition

Let .X; †/ be a measurable space. A simple function on X is a function of the form � D
Pn

jD1 cj�Ej
,

where, for each j D 1; 2; : : :n, cj is an extended real number and Ej 2 †.

Since �
Ej

is measurable for each j D 1; 2; : : : ; n, it follows from Proposition 3.2.4 that � is also

measurable.
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[2] f � g a.e. if �.fx 2 X W f .x/ > g.x/g/ D 0.

3.2.12 Definition

Let .X; †; �/ be a measure space. A function f W X ! R is said to be almost everywhere real-valued,

denoted by a.e. real-valued, if

�.fx 2 X W jf .x/j D 1g/ D 0:

We call a set of measure zero a null set.

3.2.13 Definition

A measure space .X; †; �/ is said to be complete if† contains all subsets of sets of measure zero. That is,

if E 2 †, �.E/ D 0 and A � E, then A 2 †.

It follows from Theorem 2.3.6 [1] that if a measure space .X; †; �/ is complete, E 2 †, �.E/ D 0

and A � E, then �.A/ D 0.

3.2.14 Proposition

Let .X; †; �/ be a complete measure space and f D g a.e. If f is measurable on E 2 †, then so is g.

PROOF.

Let ˛ 2 R and N D fx 2 E W g.x/ 6D f .x/g. Then N 2 † and �.N / D 0. Now,

fx 2 E W g.x/ > ˛g D fx 2 EnN W g.x/ > ˛g [ fx 2 N W g.x/ > ˛g
D fx 2 EnN W f .x/ > ˛g [ fx 2 N W g.x/ > ˛g:

The first set on the right hand side is measurable since f is measurable. The second set is measurable since

it is a subset of the null set N and the measure is complete.

2

3.2.2 Convergence of sequences of measurable functions

We now consider various notions of convergence of a sequence of measurable functions examine the rela-

tionships that exist between them.

3.2.15 Definition

Let .X†;�/ be a measure space. A sequence .fn/ of a.e. real-valued measurable functions on X is said to

[1] converge almost everywhere to an a.e. real-valued measurable function f . denoted by fn !a.e. f ,

if for each � > 0 and each x 2 X , there is a set E 2 † and a natural number N D N.�/ such that

�.E/ < � and

jfn.x/ � f .x/j < �, for each x 2 X nE and each n � N:

[2] converge almost uniformly to an a.e. real-valued measurable function f , denoted by fn !a.u. f , if

for each � > 0, there is a set E 2 † and a natural number N D N.�/ such that �.E/ < � and

kfn � f k1 D sup
x2X nE

jfn.x/� f .x/j < �, for each n � N:

[3] converge in measure to an a.e. real-valued measurable function f , denoted by fn !� f , if for

every � > 0,

lim
n!1

�.fx 2 X W jfn.x/ � f .x/j � �g/ D 0:

(if � is a probability measure, then this mode of convergence is called convergence in probability).

3.2.16 Proposition

Let .X; †; �/ be a complete measure space and .fn/ a sequence of measurable functions on E 2 † which

converges to f a.e. Then f is measurable on E.
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PROOF.

Let ˛ 2 R and N D fx 2 E W limn!1 fn.x/ 6D f .x/g. Then N 2 †;�.N / D 0 and

limn!1 fn.x/ D f .x/, for each x 2 EnN . Since E and N are measurable, so is EnN . For each

n 2 N, define gn and g by

gn.x/ D
�

0 if x 2 N

fn.x/ if x 2 EnN :

and

g.x/ D
�

0 if x 2 N

f .x/ if x 2 EnN :

Then gn D fn a.e. and f D g a.e. It follows from Proposition 3.2.4, that for each n 2 N, gn is measurable.

If x 2 N , then
lim

n!1
gn.x/ D lim

n!1
0 D 0 D g.x/; (3.1)

and if x 2 EnN , then

lim
n!1

gn.x/ D lim
n!1

fn D 0 D f .x/ D g.x/ (3.2)

It follows from (3.1) and (3.2) that the sequence .gn/ converges pointwise to g everywhere on E. By Corol-

lary 3.2.5, that g is measurable. Since g D f a.e., we have, by Proposition 3.2.14, that f is measurable.

2

3.2.17 Theorem

Let .X; †; �/ be a measure space and .fn/ be a sequence of real-valued measurable functions on X . If

the sequence .fn/ converges almost uniformly to f , then it converges in the measure to f . That is, almost

uniform convergence implies convergence in the measure.

PROOF.

Let � > 0 be given. Since the sequence .fn/ converges almost uniformly to f , there is a measurable set

E and a natural number N such that �.E/ < � and

jfn.x/� f .x/j < �, for all x 2 X nE and all n � N:

It now follows that, for all n � N; fx 2 X W jfn.x/� f .x/j � �g � E. Therefore, for all n 2 N,

�.fx 2 X W jfn.x/ � f .x/j � �g/ < �:

2

3.2.18 Theorem

Let .X; †; �/ be a measure space and .fn/ be a sequence of a.e. real-valued measurable functions on X .

If the sequence .fn/ converges almost uniformly to f , then it converges almost everywhere to f . That is,

almost uniform convergence implies convergence almost everywhere.

PROOF.

Suppose that the sequence .fn/ converges almost uniformly to f . Then, for each n 2 N, there is a

measurable set En, with �.En/ <
1
n

such that fn ! f uniformly on X nEn. Let A D
S1

nD1.X nEn/.

Then

�.X nA/ D �

� 1
\

nD1

En

�

� �.En/ D 1

n
! 0:
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3.3 Definition of the integral

In this section, we define a Lebesgue integral. This is done in three stages: firstly, we define the integral

of a nonnegative simple function; then, using the integral of a nonnegative simple function, we define the

integral or any measurable function. We also prove three key results: Monotone Convergence Theorem,

Dominated Convergence Theorem and Fatou’s Lemma.

Unless otherwise specified, we will work in the measure space .X; †; �/.

3.3.1 Integral of a nonnegative simple function

3.3.1 Definition

Let � be a nonnegative simple function with the canonical representation � D
n
X

iD1

ai�Ei
. The Lebesgue

integral of � with respect to �, denoted by
R

X
�d�, is the extended real number

Z

X

�d� D
n
X

iD1

ai�.Ei/:

If A 2 †, we define
Z

A

�d� D
Z

X

�
A
�d�:

The function � is integrable if
R

X
�d� is finite.

We also write
R

�d� for
R

X
�d�.

It is straightforward to show that if A is a measurable set and � is as above, then

Z

A

�d� D
n
X

iD1

ai�.A \ Ei/:

Furthermore,
Z

A

d� D
Z

A

�
A

d� D
Z

X

�
A

d� D �.A/:

It is necessary to show that the above definition of the Lebesgue integral is unambiguous, i.e, the integral is

independent of the representation of �. Assume that

� D
n
X

iD1

ai�Ei
D

m
X

jD1

bj�Fi
;

where Ei \ Ek D ;, for all 1 � i 6D k � n, X D
n
[

iD1

Ei; Fk \ Fl D ;, for all 1 � j 6D l � m, and

m
[

jD1

Fj . Then for each i D 1; 2; : : : ; n and each j D 1; 2; : : : ;m,

Ei D Ei \ X D Ei \
� m
[

jD1

Fj

�

D
m
[

jD1

.Ei \ Fj /, a disjoint union, and

Fj D Fj \ X D
� n
[

iD1

Ei

�

D
n
[

iD1

.Ei \ Fj /, a disjoint union.
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If Ei \ Fj 6D ;, then, for x 2 Ei \ Fj , ai D �.x/ D bj . That is, ai D bj in this case. If Ei \ Fj D ;,

then �.Ei \ Fj / D 0. Thus, ai�.Ei \ Fj / D bj�.Ei \ Fj /, for all 1 � i � n and for all 1 � j � m.

Therefore
n
X

iD1

ai�.Ei/ D
n
X

iD1

ai�

� m
[

jD1

.Ei \ Fj /

�

D
n
X

iD1

ai

m
X

jD1

�.Ei \ Fj /

D
n
X

iD1

m
X

jD1

ai�.Ei \ Fj / D
n
X

iD1

m
X

jD1

bj�.Ei \ Fj /

D
m
X

jD1

bj

n
X

iD1

�.Ei \ Fj / D
m
X

jD1

bj�

� n
[

iD1

.Ei \ Fj /

�

m
X

jD1

bj�.Fj /:

Hence the definition of the integral of � is unambiguous.

3.3.2 Proposition

Let .X; †; �/ be a measure space, � and  nonnegative simple functions, and c a nonnegative real number.

Then

[1]
R

X
.� C  /d� D

R

X
�d�C

R

X
 d�.

[2]
R

X
c�d� D c

R

X
�d�:

[3] If � �  , then
R

X
�d� �

R

X
 d�.

[4] If A and B are disjoint measurable sets, then

Z

A[B

�d� D
Z

A

�d�C
Z

B

�d�:

[5] The set function � W † ! Œ0;1� defined by

�.A/ D
Z

A

�d�;

for A 2 †, is a measure on X .

[6] If A 2 † and �.A/ D 0, then
R

A
�d� D 0.

PROOF.

Let � D
Pn

iD1 ai�Ei
, and  D

Pm
jD1 bj�Fj

be canonical representations of � and  respectively.

Then Ei \ Ek D ;, for all i � i 6D k � n, Fj \ Fl D ;, for all 1 � j 6D l � m, X D [n
iD1Ei, and

X D [m
jD1Fj .

[1] For 1 � i � n and 1 � j � m, let Gij D Ei \ Fj . Then, for each x 2 Gij , �.x/C .x/ D ai C bj ,

i.e., the function � C takes the values ai C bj on Ei \ Fj . For all 1 � i; k � n and 1 � j ; l � m,

Gij \ Gkl D .Ei \ Fj /\ .Ek \ Fl /

D .Ei \ Ek/ \ .Fj \ Fl /

D ; \ ; D ;:
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That is, fGij W 1 � i � n and 1 � j � mg is a collection of nm pairwise disjoint sets. Furthermore,

Ei D Ei \ X D Ei \
� m
[

jD1

Fj

�

D
m
[

jD1

.Ei \ Fj / D
m
[

jD1

Gij ;

Fj D Fj \ X D Fj \
� n
[

iD1

Ei

�

D
n
[

iD1

.Ei \ Fj / D
n
[

iD1

Gij , and

X D X \ X D
� n
[

iD1

Ei

�

\
� m
[

jD1

Fj

�

D
n
[

iD1

m
[

jD1

.Ei \ Fj / D
n
[

iD1

m
[

jD1

Gij

Therefore,

� C  D
n
X

iD1

m
X

jD1

.ai C bj /�Gij
:

With this representation of �C , the numbers ai C bj are not necessarily distinct. Let c1; c2; : : : ; ck

be the distinct values assumed by � C  . Then

Z

X

.� C  /d� D
k
X

rD1

cr�.fx W �.x/C  .x/ D crg/

D
k
X

rD1

cr�

 

[

ai Cbj Dcr

Ei \ Fj

!

D
k
X

rD1

cr

X

ai Cbj Dcr

�.Ei \ Fj /

D
n
X

iD1

m
X

jD1

.ai C bj /�.Gij /

D
n
X

iD1

m
X

jD1

ai�.Gij /C
n
X

iD1

m
X

jD1

bj�.Gij /

D
n
X

iD1

ai

m
X

jD1

�.Gij /C
n
X

iD1

bj

m
X

jD1

�.Gij /

D
n
X

iD1

ai�.Ei/C
m
X

jD1

bj�.Fj /

D
Z

X

�d�C
Z

X

 d�:

[2] If c D 0, then c� vanishes identically and hence,
R

X
c�d� D c

R

X
�d�. Assume that c > 0.

If � D
n
X

iD1

ai�Ei
is the canonical representation of �, then c� D

Pn
iD1 cai�Ei

is the canonical

representation of c�. Therefore,

Z

X

c�d� D
n
X

iD1

cai�.Ei/ D c

n
X

iD1

ai�.Ei/ D c

Z

X

�d�:
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[3] As shown above,

Z

X

� D
n
X

iD1

ai�.Ei/ D
n
X

iD1

ai�

� m
[

jD1

Ei \ Fj

�

D
n
X

iD1

m
X

jD1

ai�.Ei \ Fj /, and

Z

X

 D
m
X

jD1

bj�.Fj / D
m
X

jD1

bj�

� n
[

iD1

Fj \ Ei

�

D
m
X

jD1

n
X

iD1

bj�.Ei \ Fj /:

Now suppose that � �  . Then, for each x 2 Ei \ Fj , ai D �.x/ �  .x/ D bj . i.e., ai � bj , for

all i; j such that Ei \ Fj 6D ;. It follows that
R

X
�d� �

R

X
 d�.

[4] Let � be as above. Then

Z

A[B

�d� D
n
X

iD1

ai�..A [ B/\ Ei/

D
n
X

iD1

ai�Œ.A \ Ei/ [ .B \ Ei/�

D
n
X

iD1

ai Œ�.A \ Ei/C �.B \ Ei/�

D
n
X

iD1

ai�.A \ Ei/C
n
X

iD1

�.B \ Ei/

D
Z

A

�d�C
Z

B

�d�:

[5] We have that, for A 2 †,

�.A/ D
Z

A

�d� D
n
X

iD1

ai�.A \ Ei/:

If A D ;, then A \ Ei D ;, for each i D 1; 2; : : : ; n. Hence, �.A \ Ei/ D 0, for i D 1; 2; : : : ; n

and so �.;/ D 0.

Let .Ak / be a sequence of pairwise disjoint measurable sets and A D
1
[

kD1

Ak : Then, for each i D

1; 2; : : : ; n,

Ei \ A D Ei \
� 1
[

kD1

Ak

�

D
1
[

kD1

.Ei \ Ak /, a disjoint union.
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Thus,

�.A/ D
n
X

iD1

n
X

iD1

ai�.A \ Ei/

D
n
X

iD1

ai�

� 1
[

kD1

Ei \ Ak

�

D
n
X

iD1

ai

1
X

kD1

�.Ei \ Ak /

D
1
X

kD1

n
X

iD1

ai�.Ei \ Ak /

D
1
X

kD1

�.Ak /:

That is, �

� 1
[

kD1

Ak

�

D
1
X

kD1

�.Ak /:

[6] We have by [5], that

0 �
Z

A

�d� D
n
X

iD1

ai�.A \ Ei/ �
n
X

iD1

ai�.A/ D 0:

Thus,
R

A
�d� D 0.

2

The next result asserts that changing a simple function on a null set does not change the integral.

3.3.3 Corollary

Let .X; †; �/ be a measure space and � a nonnegative simple function. If A and B are measurable sets

such that A � B and �.BnA/ D 0, then

Z

A

�d� D
Z

B

�d�:

PROOF.

Noting that B D A [ .BnA/, a disjoint union, we have by Proposition 3.3.2 [4] and [6], that

Z

B

�d� D
Z

A[.BnA/

�d� D
Z

A

�d�C
Z

BnA

�d� D
Z

A

�d�C 0 D
Z

A

�d�:

2

3.3.2 Integral of a nonnegative measurable function

We showed in Theorem 3.2.8 that every nonnegative measurable function is a pointwise limit of an increas-

ing sequence of of nonnegative simple functions. Using this fact, we are able to define the integral of a

nonnegative measurable function using the integrals of nonnegative simple functions.
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3.3.4 Definition

Let f be a nonnegative measurable function. The Lebesgue integral of f with respect to �, denoted by
R

X
fd�, is defined as

Z

X

fd� D sup

� Z

X

�d� W 0 � � � f; � is a simple function

�

:

If E 2 †, then we define the Lebesgue integral of f over E with respect to � as

Z

E

fd� D
Z

f �
E

d�:

Notice that if f is a nonnegative simple function, then Definitions 3.3.1 and 3.3.4 coincide.

3.3.5 Proposition

Let f and g be nonnegative measurable functions and c a nonnegative real number.

[1]
R

X
cfd� D c

R

X
fd�:

[2] If f � g, then
R

X
fd� �

R

X
gd�:

[3] If A and B are measurable sets such that A � B, then

Z

A

fd� �
Z

B

fd�:

PROOF.

[1] If c D 0, then the equality holds trivially. Assume that c > 0. Then

Z

X

cfd� D sup

�
Z

X

�d� W 0 � � � cf; � a simple function

�

D sup

�

c

Z

X

�

c
d� W 0 � �

c
� f; � a simple function

�

D c sup

�
Z

X

�

c
d� W 0 � �

c
� f; � a simple function

�

D c

Z

X

f ı�:

[2] Since f � g, it follows that f� W 0 � � � f; � a simple functiong � f� W 0 � � � g; � a simple functiong.

Thus,
Z

X

fd� D sup
0���f

Z

X

�d� � sup
0���g

Z

X

�d� D
Z

X

gd�:

[3] If A � B, then �
A

� �
B

. Therefore, for any nonnegative measurable function f , we have that

f �
A

� f �
B

. By [2], it follows that

Z

A

fd� D
Z

X

f �
A

d� �
Z

X

f �
B

d� D2B fd�:
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Conversely, assume that f D 0 a.e. on X . Let � D
n
X

iD1

ai�Ei
be a nonnegative simple function,

written in canonical form, such that � � f . Then � D 0 a.e. on X . Since Ei D fx 2 X W �.x/ D ai; i D

1; 2; : : : ; ng; we have that �

� n
[

iD1

Ei

�

D 0. But since

�

� n
[

iD1

Ei

�

D
n
X

iD1

�.Ei/;

we have that �.Ei/ D 0, for each i D 1; 2; : : : ; n. Therefore,

Z

X

�d� D
n
X

iD1

ai�.Ei/ D 0:

It then follows that
Z

X

fd� D sup
0���f

Z

X

�d� D 0:

2

3.3.8 Proposition

Let .X; †; �/ be a measure space and f a nonnegative measurable function. If A 2 † and �.A/ D 0, then

Z

A

fd� D 0:

PROOF.

Let � be a nonnegative simple function such that � � f . Then, by Proposition 3.3.2 [6], we have that
R

A
�d� D 0. Therefore

Z

A

fd� D sup
0���f

Z

A

�d� D sup
0���f

f0g D 0:

2

3.3.9 Theorem (Monotone convergence theorem)

Let .X; †; �/ be a measure space, .fn/ a sequence of measurable functions on X such that 0 � fn � fnC1,

for every n 2 N and limn!1 fn.x/ D f .x/, for each x 2 X . Then f is measurable and

Z

X

fd� D
Z

X

�

lim
n!1

fn

�

D lim
n!1

Z

X

fnd�:

PROOF.

We have already shown in Corollary 3.2.5 that f is measurable.

Since 0 � fn � fnC1 � f , for each n 2 N, it follows, by Proposition 3.3.5, that

Z

X

fnd� �
Z

X

fnC1d� �
Z

X

fd�;

for each n 2 N. Hence,

lim
n!1

Z

X

fnd� �
Z

X

fd� (3.3)
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We now prove the reverse inequality. Let � be a simple function such that 0 � � � f . Choose and fix

� such that 0 < � < 1. For each n 2 N, let

An D fx 2 X W fn.x/ � .1 � �/�.x/g:

Now, for each n 2 N, An is measurable, and since .fn/ is an increasing sequence, we have that An � AnC1.

Furthermore X D
1
[

nD1

An. Since for each n 2 N, An � X , it follows that

1
[

nD1

An � X . For the reverse

containment, let x 2 X . If f .x/ D 0, then �.x/ D 0, and therefore x 2 A1. If on the other hand,

f .x/ > 0, then .1 � �/�.x/ < f .x/. Since fn " f and 0 < � < 1, there is a natural number N such that

.1 � �/�.x/ � fn.x/, for all n � N . Thus, x 2 An, for all n � N , and so, X �
1
[

nD1

An. Now, for each

n 2 N,
Z

X

fnd� �
Z

An

fnd� � .1 � �/
Z

An

�d�:
(3.4)

Define � W † ! Œ0;1� by

�.E/ D
Z

E

�d�; E 2 †:

We have already shown in Proposition 3.3.2 [5], that � is a measure on †. Since .An/ is an increasing

sequence of measurable sets such that X D
1
[

nD1

An, we have, by Theorem 2.3.6 [3], that

�.X / D �

� 1
[

nD1

An

�

D lim
n!1

�.An/:

That is,
R

X
�d� D limn!1

R

An
�d�. Letting n ! 1 in (3.4), we have that

lim
n!1

Z

X

fnd� � .1 � �/

Z

X

�d�:

Since � is arbitrary, it follows that

lim
n!1

Z

X

fnd� �
Z

X

�d�;

for any nonnegative simple function � such that � � f . Then,

lim
n!1

Z

X

fnd� � sup

�Z

X

�d� W � is simple and 0 � � � f

�

D
Z

X

fd�: (3.5)

From (3.3) and (3.5), we have that

lim
n!1

Z

X

fnd� D
Z

X

fd�:

2

3.3.10 Corollary

Let f and g be nonnegative measurable functions. Then

Z

X

.f C g/d� D
Z

X

fd�C
Z

X

gd�:
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PROOF.

By Theorem 3.2.8, there are monotonic increasing sequences .�n/ and . n/ of nonnegative simple

functions such that �n ! f and  n ! g, as n ! 1. Then .�n C n/ is a monotonic increasing sequence

which converges to f C g. By the Monotone Convergence Theorem (Theorem 3.3.9), we have that

Z

X

.f C g/d� D lim
n!1

Z

X

.�n C n/d�

D lim
n!1

�
Z

X

�nd�C
Z

X

 nd�

�

D lim
n!1

Z

X

�nd�C lim
n!1

Z

X

 nd�

D
Z

X

fd�C
Z

X

gd� (by the Monotone Convergence Theorem)

2

3.3.11 Corollary

Let .X; †; �/ be a measure space and .fn/ a sequence of nonnegative measurable functions on X . Then,

for each n 2 N,
Z

X

n
X

kD1

fkd� D
n
X

kD1

Z

X

fkd�:

PROOF.

(Induction on n). If n D 1, then the result is obviously true. If n D 2, then, by Corollary 3.3.10, the

result holds. Assume that
Z

X

n�1
X

kD1

fkd� D
n�1
X

kD1

Z

X

fkd�:

then
Z

X

n
X

kD1

fkd� D
Z

X

� n�1
X

kD1

fk C fn

�

d�

D
Z

X

n�1
X

kD1

fk C
Z

X

fnd� (by Corollary 3.3.10)

D
n�1
X

kD1

Z

X

fkd�C
Z

X

fnd� (by the induction hypothesis)

D
n
X

kD1

Z

X

fkd�:

2

3.3.12 Corollary (Beppo Levi)

Let .X; †; �/ be a measure space .fn/ a sequence of nonnegative measurable functions on X and f D
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PROOF.

Since fn !a.e., there is a set N 2 † such that �.N / D 0 and fn ! f pointwise on N c . By Theorem

3.3.9,

lim
n!1

Z

N c

fnd� D
Z

N c

fd�:

From Corollary 3.3.13, it follows that
Z

X

fd� D
Z

N c

fd� D lim
n!1

Z

N c

fnd� D lim
n!1

Z

X

fnd�:

2

3.3.15 Proposition

Let .X; †; �/ be a measure space and f a nonnegative measurable function on X . Then the set function

� W † ! Œ0;1� defined by

�.A/ D
Z

A

fd�; A 2 †

is a measure on X . Furthermore, for any nonnegative measurable function g,
Z

X

gd� D
Z

X

gfd�:

PROOF.

We note that

�.A/ D
Z

A

fd� D
Z

X

�
A
fd�:

Since f � 0, it follows that �.A/ � 0, for each A 2 †. If A D ;, then �A D 0 and so �
A
f D 0. Therefore

�.;/ D �.A/ D
Z

X

�
A
fd� D

Z

X

0d� D 0:

Let .An/ be a sequence of pairwise disjoint measurable sets and A D
S1

nD1 An. Then

�
A

D �S1
nD1

An
D

1
X

nD1

�
An
:

Therefore, �
A
f D

P1
nD1 �An

f , and so

�.A/ D
Z

X

�
A
fd� D

Z

X

1
X

nD1

�
An
fd�

D
1
X

nD1

Z

X

�
An
fd� (by Corollary 3.3.12)

D
1
X

nD1

Z

An

fd�

D
1
X

nD1

�.An/:
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That is, �

�

S1
nD1 An

�

D
P1

nD1 �.An/.

If g D �
A

, for some A 2 †, i.e., g is a characteristic function, then
Z

X

gd� D
Z

X

�
A

d� D
Z

A

d� D �.A/

and
Z

X

gfd� D
Z

X

�
A
fd� D

Z

A

fd� D �.A/:

Thus,
R

X
gd� D

R

X
gfd�. Assume that g D �, a nonnegative simple function and let � D

Pn
iD1 ai�Ei

be the canonical representation of �. Then,

Z

X

gd� D
Z

X

�d� D
Z

X

� n
X

iD1

ai�Ei

�

d�

D
n
X

iD1

ai

Z

X

�
Ei

d� (by Corollary 3.3.11 and Proposition 3.3.5)

D
n
X

iD1

ai

Z

Ei

d�

D
n
X

iD1

ai�.Ei/;

and
Z

X

gfd� D
Z

X

�fd� D
Z

X

� n
X

iD1

ai�Ei

�

fd�

D
n
X

iD1

ai

Z

X

�
Ei
fd� (by Corollary 3.3.11 and Proposition 3.3.5)

D
n
X

iD1

ai

Z

Ei

fd�

D
n
X

iD1

ai�.Ei/:

Therefore, if g is a nonnegative simple function, then
R

X
gd� D

R

X
gfd�.

Let g be a nonnegative measurable function. Then, by Theorem 3.2.8, there is an increasing sequence

.�n/ of nonnegative simple functions such that �n !n!1 g. Then �nf !n!1 gf . Clearly the �nf are

nonnegative and measurable functions for each n 2 N (see Proposition 3.2.4). By the Monotone Conver-

gence Theorem (Theorem 3.3.9), we have that
Z

X

gd� D lim
n!1

Z

X

�nd�

D lim
n!1

Z

X

�nfd�

D
Z

X

gfd�:
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If f < 0, then f C D 0 and so, for any x 2 X ,

f C.x/ D 0 � g.x/:

A similar argument shows that f � � h.

3.3.17 Definition

Let .X; †; �/ be a measure space and f a measurable function on X . If
R

X
f Cd� < 1 or

R

X
f �d� < 1,

then we define the integral of f , denoted by
R

X
fd�, as the extended real number

Z

X

fd� D
Z

X

f Cd� �
Z

X

f �d�:

If
R

X
f Cd� < 1 and

R

X
f �d� < 1, then f is said to be (Lebesgue) integrable on X . The set of all

integrable functions is denoted by L1.X; �/.

It is clear that f is integrable if and only if
R

X
jf jd� < 1. In this case,

Z

X

jf jd� D
Z

X

f Cd�C
Z

X

f �d�:

3.3.18 Remark

Let .X; †; �/ be a measure space and f a measurable function on X . If f is integrable on X , then jf j < 1
a.e. on X . Indeed, if A 2 † with �.A/ > 0 and jf j D 1 on A, then, for each n 2 N, jf j > n�

A
. Hence,

Z

X

jf jd� �
Z

X

n�
A

d� D n

Z

A

d� D n�.A/:

Letting n tend to infinity, we have that
R

X
jf jd� D 1.

3.3.19 Theorem

Let .X; †; �/ be a measure space, f; g 2 L1.X; �/ and let c 2 R. Then

[1] cf 2 L1.X; �/ and
R

X
.cf /d� D c

R

X
fd�.

[2] f C g 2 L1.X; �/ and
R

X
.f C g/d� D

R

X
fd�C

R

X
gd�.

PROOF.

[1] Assume that c � 0. Then,

.cf /C D maxfcf; 0g D c maxff; 0g D c.f C/ and

.cf /� D maxf�.cf /; 0g D c maxf�f; 0g D c.f �/

Therefore,
Z

X

.cf /Cd� D
Z

X

cf Cd� D c

Z

X

f Cd� < 1 and

Z

X

.cf /�d� D
Z

X

cf �d� D c

Z

X

f �d� < 1:
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Hence, cf is integrable and

Z

X

.cf /d� D
Z

X

.cf /Cd��
Z

X

.cf /�d�

D c

Z

X

f Cd�� c

Z

X

f �d�

D c

�Z

X

f Cd��
Z

X

f �d�

�

D c

Z

X

fd�:

If c < 0, then c D �k for some k > 0. Therefore

.cf /C D maxfcf; 0g D maxf�kf; 0g D k maxf�f; 0g D kf � D �cf � and

.cf /� D maxf�.cf /; 0g D maxf�cf; 0g D maxfkf; 0g D k maxff; 0g D kf C D �cf C:

From this it follows that
Z

X

.cf /Cd� D
Z

X

.�cf �/d� D �c

Z

X

f �d� < 1 and

Z

X

.cf /�d� D
Z

X

.�cf C/d� D �c

Z

X

f Cd� < 1:

Therefore, cf is integrable and

Z

X

.cf /d� D
Z

X

.cf /Cd� �
Z

X

.cf /�d�

D �c

Z

X

f �d�� .�c/

Z

X

f Cd�

D �c

Z

X

f �d�C c

Z

X

f Cd�

D c

�
Z

X

f Cd��
Z

X

f �d�

�

D c

Z

X

fd�:

[2] Since
f C g D .f C g/C � .f C g/� and

f C g D .f C � f �/C .gC � g�/ D .f CgC/� .f � C g�/;

we have that

.f C g/C � f CgC and .f C g/� � f � C g�:
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By Proposition 3.3.5 [2], it follows that

Z

X

.f C g/Cd� �
Z

X

.f C C gC/d� �
Z

X

f Cd�C
Z

X

gCd� < 1 and

Z

X

.f C g/�d� �
Z

X

.f � C g�/d� �
Z

X

f �d�C
Z

X

g�d� < 1:

Thus, f C g is integrable. Since .f C g/C � .f C g/� D f C g D f C � f � C gC � g�, we have

that

.f C g/C C f � C g� D .f C g/� C f C C gC:

By Corollary 3.3.10, it follows that

Z

X

Œ.f C g/C C f � C f ��d� D
Z

X

Œ.f C g/� C f C C gC�d�

,
Z

X

.f C g/Cd�C
Z

X

f �d�C
Z

X

g�d� D
Z

X

.f C g/�d�C
Z

X

f Cd�C
Z

X

gCd�

,
Z

X

.f C g/Cd� �
Z

X

.f C g/�d� D
Z

X

f Cd�C
Z

X

f �d�C
Z

X

gCd� �
Z

X

g�d�

,
Z

X

.f C g/d� D
Z

X

fd�C
Z

X

gd�:

2

3.3.20 Corollary

Let .X; †; �/ be a measure space. Then L1.X; �/ is a vector space with respect to the usual operations of

addition and scalar multiplication.

3.3.21 Proposition

Let .X; †; �/ be a measure space, f; g 2 L1.X; �/. If f � g a.e. on X , then

Z

X

fd� �
Z

X

gd�:

PROOF.

Since g � f � 0 a.e. on X , we have that

Z

X

gd� �
Z

X

fd� D
Z

X

.g � f /d� � 0:

It now follows that
R

X
fd� �

R

X
gd�.

2

3.3.22 Lemma

Let .X; †; �/ be a measure space. If g is a Lebesgue integrable function on X and f is a measurable

function such that jf j � g a.e., then f is Lebesgue integrable on X .

PROOF.
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Since jf j D f C C f �, it follows that f C � g and f � � g. Hence,

0 �
Z

X

f Cd� �
Z

X

gd� and 0 �
Z

X

f �d� �
Z

X

gd�:

Therefore f C and f � are both integrable.

2

The following theorem, known as Lebesgue’s Dominated Convergence Theorem, provides a useful

criterion for the interchange of limits and integrals and is of fundamental importance in measure theory. As

a motivation for the measure theoretic approach to integration, think about how careful one must be when

interchanging the limits and integrals in Riemann integration.

3.3.23 Theorem (Lebesgue’s Dominated Convergence Theorem)

Let .X; †; �/ be a measure space, .fn/ a sequence of measurable functions on X such that fn !n!1 f

a.e., for f a measurable function. If there is a Lebesgue integrable function g such that for each n 2 N,

jfnj � g a.e., then f is Lebesgue integrable and

lim
n!1

Z

X

fnd� D
Z

X

fd�:

PROOF.

Since jfnj � g a.e., for each n 2 N, it follows that jf j � g a.e. By Lemma 3.3.22, we have that f is

Lebesgue integrable.

Since g ˙ fn � 0, for each n 2 N, we have by Fatou’s Lemma (Theorem 3.3.16), that

Z

X

gd�C
Z

X

fd� D
Z

X

.g C f /d� � lim inf
n

Z

X

.g C fn/d�, and (3.8)

Z

X

gd� �
Z

X

fd� D
Z

X

.g � f /d� � lim inf
n

Z

X

.g � fn/d�: (3.9)

Now,

lim inf
n

Z

X

.g C fn/d� D
Z

X

gd�C lim inf
n

Z

X

fnd�, and (3.10)

lim inf
n

Z

X

.g � fn/d� D
Z

X

gd� � lim sup
n

Z

X

fnd�: (3.11)

Since g is Lebesgue integrable, we have, from (3.8) and (3.10), that

Z

X

fd� � lim inf
n

Z

X

fnd�: (3.12)

Similarly, from (3.9) and (3.11), we have that

lim sup
n

Z

X

fnd� �
Z

X

fd� (3.13)

From (3.12) and (3.13), it follows that

lim sup
n

Z

X

fnd� �
Z

X

fd� � lim inf
n

Z

X

fnd�;
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