2) Two-Dimensional system:-

Linearization and stability analysis:-

Let λ_1 and λ_2 be the eigenvalue of the Jacobin matrix A.

Real eigenvalue

If
$$|\lambda_1| < 1$$
 and , $|\lambda_2| < 1$ \Rightarrow stable node

If
$$|\lambda_1| > 1$$
 or $|\lambda_2| > 1$ \Rightarrow unstable node

If
$$\lambda_i \leq 1$$
, $|\lambda_i| = 1$ \Rightarrow Test fails

Complex eigenvalue $\lambda = \alpha + i\beta$

If
$$|\lambda| < 1$$
 \Rightarrow stable spiral

If
$$|\lambda| > 1$$
 \Rightarrow unstable spiral

If
$$|\lambda| = 1$$
 \Rightarrow Test fails

Example:- Determine the stability of all equilibrium of the dynamical system

$$x_{k+1} = f(x_k)$$
, where $f(x) = \begin{bmatrix} \chi + y^2 \\ x + 2y \end{bmatrix}$

Solution:- to determine the equilibrium point f(x) = x

$$\begin{bmatrix} \chi + y^2 \\ x + 2y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\chi + y^2 = x \implies y = 0 \qquad , \qquad x + 2y = y \implies x = 0$$

$$x^* = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ is an equilibrium point}$$

The jacobian matrix: $A = \begin{bmatrix} 1 & 2y \\ 1 & 2 \end{bmatrix}$

$$A\begin{bmatrix}0\\0\end{bmatrix} = \begin{bmatrix}1&0\\1&2\end{bmatrix}$$
 \Rightarrow the eigenvalues $\lambda_1 = 1$, $\lambda_2 = 2$

$$|\lambda_2| > 1$$

The equilibrium point $x^* = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is unstable node

III) Lyapunov functions:-

Consider x^* is an equilibrium point of a dynamical system

Let J be a function of x satisfies the following condition:-

I) v(x) is a continuous function

II)
$$v(x) > 0$$
, $\forall x \neq x^*$

III)
$$v(x^*) = 0$$

1) Continuous-Time:-

If $\frac{dv}{dt} < 0$, $\forall x$ at least within a fixed positive distance of x^* (x^* may be excluded), then v(x) is a Lyapunov function and x^* is stable

If
$$\frac{dv}{dt} > 0$$
, $\forall x \neq x^*$ then x^* is unstable

2) Discrete-Time:-

If v(f(x)) - V(x) < 0, $\forall x$ at least within a fixed positive distance of x^* (x^* may be excluded), then V(x) is a Lyapunov function and x^* is stable

If
$$Vf((x)) - v(x) > 0$$
, $\forall x \neq x^*$ then x^* is unstable

The general form of the function V(x)

$$V(x) = (x_1 - x_1^*)^2 + (x_2 - x_2^*)^2 + \dots + (x_n - x_n^*)^2$$

Example:- consider the dynamical system $x' = -x^3$. Study the equilibrium points and determine their stability

Solution:-
$$x' = 0 \implies -x^3 = 0 \implies x = 0$$

One equilibrium point $x^* = 0$

$$f'(x) = -3x^2 \qquad \Rightarrow \qquad f'(0) = 0$$

Linearization fails

Using Lyapunov functions let $V(x) = x^2$ satisfies the conditions:

I) V(x) is a continuous function

II)
$$V(x) > 0$$
, $\forall x \neq x^*$

III)
$$V(x^*) = 0$$

$$\frac{dV}{dt} = \frac{dV}{dx}\frac{dx}{dt} = 2xx' = (2x)(-x^3) = -2x^4 < 0, \quad \forall x \neq x^*$$

 $x^* = 0$ is a stable equilibrium point

Example:- consider the dynamical system $x' = f(x) = \begin{bmatrix} -y \\ x + y^3 - 3y \end{bmatrix}$. Using Lyapunov functions study the equilibrium points and determine their stability

Solution:-
$$x' = 0 \Rightarrow -y = 0 \Rightarrow y = 0$$
 $x + y^3 - 3y = 0 \Rightarrow x = 0$

The equilibrium points is $x^* = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Using Lyapunov functions let $V(x) = x^2 + y^2$ satisfies the conditions:

I) V(x) is a continuous function

II)
$$V(x) > 0$$
, $\forall x \neq x^*$

III)
$$V(x^*) = 0$$

$$\frac{dV}{dt} = \frac{dV}{dx}\frac{dx}{dt} + \frac{dV}{dy}\frac{dy}{dt} = 2x(-y) + 2y(x + y^3 - 3y)$$
$$= -2xy + 2yx + 2y^4 - 6y^2$$
$$= 2y^2(y^2 - 3)$$

 $\therefore \frac{dV}{dt} < 0 \quad \forall |y| < \sqrt{3}, \text{ with a circle of radius } \sqrt{3} \text{ around } x^* \text{ we have } \frac{dV}{dt} < 0$

 $V(x) = x^2 + y^2$ is a Lyapunov function and $x^* = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is a stable node.

Example:- consider the dynamical system $x_{k+1} = f(x_k)$, $x' = f(x) = \begin{bmatrix} y^2 \\ x \end{bmatrix}$. Using Lyapunov functions. Study the equilibrium points and determine their stability

Solution:
$$f(x) = x \implies \begin{bmatrix} y^2 \\ x \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} \implies x = 0, \ y = 0$$

The equilibrium points is $x^* = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Using Lyapunov functions let $V(x) = x^2 + y^2$ satisfies the conditions:

I) V(x) is a continuous function

II)
$$V(x) > 0$$
, $\forall x \neq x^*$

III)
$$V(x^*) = 0$$

$$V(f(x)) = V(x) = y^2 - x^2 - x^2 - y^2 = y^2(y^2 - 1)$$

∴ V(f(x)) - V(x) < 0, $\forall |y| < 1$, with a circle of radius $\sqrt{3}$ around x^* we have V(f(x)) - V(x), $V(x) = x^2 + y^2$ is a Lyapunov function and $x^* = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is a stable node.