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Preliminary Facts  

Let 
1

S  be the set of transient states. We will often use conditional 

probabilities and expectations given 
0

X i= , and express them as 

( ) ( )0
Pr

i
P A A X i= = ,         0i

E X E X X i= =   . 

For instance, ( ) ( )n

i n ij
P X j p= = . 

From the first entrance theorem (Lecture 7): 

For every two states ,i j SS  in a MC  , 0,1,2,...nX n = , the relation 

of probability ( )n

ijp  in terms of  
( )n

ijf  is given by  

( ) ( ) ( )

1

n
n k n k

ij ij jj

k

p f p
−

=

= , for 1,2,...n = . 

This expression can also be written in the following form: 
1

( ) ( ) ( ) ( )

1

n
n k n k n

ij ij jj ij
k

p f p f
−

−

=

= +  for 2,3,...n = , 

where the last equation follows from the fact that ( )0
1jjp = . From 

this we have with, ( 0 )

0
ij

f = , that 

( )

( )

1
( ) ( ) ( )

1

, 1

, 2,3,...

n

ij
n

n
ij n k n k

ij ij jj
k

p n
f

p f p n
−

−

=

=
= 

− =

. 

Corollary (1). A general recursive for computing ( )n

ijf , for ,i j SS  

is ( ) ( )
1

( ) ( )

1

n
n n kn k

ij ij ij jj
k

f p f p
−

−

=

= − , for  2n  . 
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Proof. The first passage time probabilities satisfy a recursive 

relationship: 

           ( ) ( )1 (1)

ij ij ijp p f= =                       ( ) ( )1(1)

ij ij ijf p p= = ,    

          ( ) ( )2 1(2) (1)

ij ij ij jjp f f p= +                   ( )2(2) (1)

ij ij ij jjf p f p= − , 

          ( ) ( ) ( )3 2 1(3) (1) (2)

ij ij ij jj ij jjp f f p f p= + +     ( ) ( )3 2(3) (1) (2)

ij ij ij jj ij jjf p f p f p= − + . 

In general, since 

         ( ) ( ) ( )
1

( ) ( ) ( )

1 1

, 2
n n

n n r n rr n r

ij ij jj ij ij jj
r r

p f p f f p n
−

− −

= =

= = +    

                                                                  
( ) ( )

1
( ) ( )

1

, 2
n

n n rn r

ij ij ij jj
r

f p f p n
−

−

=

= −  .. 

Theorem (1).  

Let  , 0,1,...nX n =  be a MC with TPM M  over a state space SS . 

Then for any state j SS , the following are equivalent: 

i- j  is recurrent. 

ii- ( ) 1j jP T   = . 

iii- ( )

0

n

jj
n

p


=

=  . 

Proof. ( )i ii−  − . Suppose that j  is recurrent. By definition, the 

MC must hit state j  infinitely often. In particular, the MC must hit 

the state j  at least twice. This guarantees the existence of non-

negative integers m n  such that: 

mX j=  and 
nX j= . 

By the Markov property and our assumption that the MC is time-

homogeneous, 



 

Prof. M A El-Shehawey 

3 

 

( ) ( )0Pr , Pr ,n m n mX j X j X j X j−= = = = = . 

Which holds for all m n . Therefore, 

( ) ( ) 1j j jP T P n m  = −   = . 

Conversely, suppose that 
jT  is always finite. Then, suppose by 

contradiction that j  is a transient state. 

0n   such that  
nX j=  and , mm n X j   . 

Then by the Markov Property, 

   0Pr , Pr , 0n m nX j X j m n X j X j n=    = =    . 

However, if this occurs, it must be true that: 

   0min 1, min 1,j jj n nT T n X j X j n X j =  = =   = =  . 

But this contradicts our assumption that the return time is finite. 

( )ii iii− − . We define the number of visits to j  for a MC starting 

at j  to be: 
 0,

0

1
n

j X j X j
n




= =
=

= . Then we consider: 

                      ( ) ( )  0
0 ,

0 0 0

Pr , 1
n

n

jj n X j X j
n n n

p X j X j E
  

= =
= = =

 = = = =
     

                                  0,
0

1
n

jX j X j
n

E E 


= =
=

 
 = =   

 
 . 

But 
j

  is infinite if and only if jT  is finite. 

 

The next lemma demonstrates that recurrence is communication 

class property: 

Lemma (1). Suppose  , 0,1,...nX n =  is a MC with state space SS , 

suppose C  is a communication class. Then given any state j  in C : 



 

Prof. M A El-Shehawey 

4 

 

j C  is transient    k C  is transient k C   

Proof. Suppose that j C  is transient and fix k SS . Since C  is a 

communication class, there exist positive integers ,m n  such that: 
( )

0
m

jkp   and ( )
0

n

kjp  . Then we observe that for all 0r  : 
( ) ( ) ( ) ( )m r n m r n

jj jk kk kjp p p p
+ +

 . 

This is true because the left side of the inequality is the probability 

of the event  0 , m r nA X j X j+ += = =  and the right side is probability 

of the event  0 , , ,m r n m r nB X j X k X k X j+ + += = = = = . Then it is clear 

that B A  and thus we get the above inequality. 

Summing over every 0r  , we get that: 

                         ( ) ( ) ( ) ( )

0 0

m r n m r n

jj jk kk kj

r r

p p p p
 

+ +

= =

   

                     ( )

( ) ( )

( )

( ) ( )

( )

0 0 0

1 1r m r n l

kk jj jjm n m n
r r ljk kj jk kj

p p p
p p p p

  
+ +

= = =

       . 

The last inequality holds because we assume j  to be transient and 

therefore the sum must be finite by theorem (1). Then, k  must be 

transient as well by theorem (1). 

      It immediately follows that any state j  is recurrent if and only 

if every other state in the communication class of j  is recurrent. 

In particular, we notice that if a MC is irreducible, then the whole 

system must either be transient or recurrent. 

 

Def. (Regular chain) 

An irreducible or recurrent MC is called a regular chain if some 

power of the TPM M  has only positive elements. The easiest way 

to check regularity is to keep track of whether the entries in the 
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powers of M  are positive. This can be done without computing 

numerical values by putting an x  in the entry if it is positive and a 0  

otherwise. To check regularity, let  1,2,3,4SS = : 

( )
,

1 0 0 0

2 0

3 0

4 0 0 0

ij i j SS

x

x x x
p

x x x

x



 
 
 = =
 
 
 

M , 2

1 0

2

3

4 0

x x x

x x x x

x x x x

x x x

 
 
 =  =
 
 
 

M M M , and  

4 2 2

1

2

3

4

x x x x

x x x x

x x x x

x x x x

 
 
 =  =
 
 
 

M M M . 

Since all entries in 4
M are positive, the chain is regular.  

Note that the test for regularity is made faster by squaring the 

result each time. 

Example: Consider a MC on state space  1,2,3,4SS =  with TPM:  

( )
,

1 0 1 0 0

2 1 3 0 2 3 0

3 0 2 3 0 1 3

4 0 0 1 0

ij i j SS
p



 
 
 = =
 
 
 

M . To check regularity, let 

( )
,

1 0 0 0

2 0 0

3 0 0

4 0 0 0

ij i j SS

x

x x
p

x x

x



 
 
 = =
 
 
 

M , 
2

1 0 0

2 0 0

3 0 0

4 0 0

x x

x x

x x

x x

 
 
 =  =
 
 
 

M M M , and 
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4 2 2

1 0 0

2 0 0

3 0 0

4 0 0

x x

x x

x x

x x

 
 
 =  =
 
 
 

M M M . 

Observe that even powers of M  will have 0 's in the even numbered 

entries of row 1. Furthermore, 

3 2

1 0 0

2 0 0

3 0 0

4 0 0

x x

x x

x x

x x

 
 
 =  =
 
 
 

M M M , and 
5 2 3

1 0 0

2 0 0

3 0 0

4 0 0

x x

x x

x x

x x

 
 
 =  =
 
 
 

M M M . 

Note that odd powers of M  will have 0 's in the odd numbered 

entries of row 0 . This chain is not regular because no power of the 

transition matrix has only positive elements. This example has 

demonstrated that a periodic chain cannot be regular. Hence, a 

regular MC is irreducible and aperiodic. 

 

Example (4).(Four-State Model of Weather) 

Suppose that weather can be classified as either raining, snowing, 

cloudy, or sunny. Observations of the weather are made at the 

same time every day. The daily weather is assumed to have the 

Markov property, which means that the weather tomorrow depends 

only on the weather today. That is, the weather yesterday or on 

prior days will not affect the weather tomorrow. Since the daily 
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weather is assumed to have the Markov property, the weather will 

be modeled as a MC with four states. The state 
n

X  denotes the 

weather on day n  for 0,1,2,...n = . The states are indexed below: 
State, nX  Description 

1  Raining 

2  Snowing 

3  Cloudy 

4  Sunny 

The state space is  1,2,3,4SS = . 

Transition probabilities  

    Transition probabilities are based on the following observations. 

If it is raining today, the probabilities that tomorrow will bring 

rain, snow, clouds, or sun are 0.3, 0.1, 0.4, and 0.2, respectively. If 

it is snowing today, the probabilities of rain, snow, clouds, or sun 

tomorrow are 0.2, 0.5, 0.2, and 0.1, respectively. If today is cloudy, 

the probabilities that rain, snow, clouds, or sun will appear 

tomorrow are 0.3, 0.2, 0.1, and 0.4, respectively. Finally, if today 

is sunny, the probabilities that tomorrow it will be snowing, 

cloudy, or sunny are 0.6, 0.3, and 0.1, respectively. (A sunny day is 

never followed by a rainy day). Transition probabilities are 

obtained in the following manner. If day n  designates today, then 

day 1n+  designates tomorrow. If 
n

X  designates the state today, 

then 1nX +  designates the state tomorrow. If it is raining today, then 

1nX = . If it is cloudy tomorrow, then 1 3nX + = . Consider the four- 

state MC model of the weather on state space  1,2,3,4SS =  with 

 TPM M :  
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( )

,

1 2 3 4

1 0.3 0.1 0.4 0.2

2 0.2 0.5 0.2 0.1

3 0.3 0.2 0.1 0.4

4 0 0.6 0.3 0.1

ij i j SS
p



 
 
 = =
 
 
 

M
.          (i) 

The two-step TPM is 

       
( )2 2

1 0.23 0.28 0.24 0.25

2 0.22 0.37 0.23 0.18

3 0.16 0.39 0.29 0.16

4 0.21 0.42 0.18 0.19

 
 
 = =  =
 
 
 

M M M M . 

The four-step TPM is 

                    ( )4 4 2 2

1 0.2054 0.3666 0.2342 0.1938

2 0.2066 0.3638 0.2370 0.1926

3 0.2026 0.3694 0.2410 0.1870

4 0.2094 0.3642 0.2334 0.1930

 
 
 = =  =
 
 
 

M M M M . 

The eight-step TPM is computed as follows: 

                    ( )8 8 4 4

1 0.2060 0.3658 0.2367 0.1916

2 0.2059 0.3658 0.2367 0.1916

3 0.2059 0.3658 0.2467 0.1816

4 0.2060 0.3658 0.2367 0.1916

 
 
 = =  =
 
 
 

M M M M . 

Observe that as the exponent n  increases from 1 to 2, from 2 to 4, 

and from 4 to 8, the entries of ( ) ( )( )
,

n n

ij i j SS
p


=M  approach limiting 

values. When 8n = , all the rows of ( )8

M  are almost identical. One 

may infer that as n  becomes very large, all the rows of ( )n

M  

approach the same stationary probability vector, namely 
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( ) ( ) ( ) ( ) ( )( ) ( )1 2 3 4 0.2059 0.3658 0.2367 0.1916
n n n n n

p p p p= =P . 

That is, after n  transitions, as n  becomes very large, the n -step 

transition probability ( )n

ij
p  approaches a limiting probability, ( )n

j
p , 

irrespective of the starting state i .  

If 
j

  denotes the limiting probability for state j  in an L -state 

MC, then the limiting probability is defined by the formula 
( )

lim
n

j ij
n

p
→

= , for 1,2,...,j L=   

The limiting probability 
j

 is called a steady-state probability. 

The vector of steady-state probabilities for an L -state MC is a 1 L

row vector denoted by ( )1 2 L  =π . 

Since π  is a probability vector, the entries of π  must sum to one. 

Thus,  

                         0j   for 1,...j L=   and,  
1

1
L

j
j


=

= .            (a) 

This is called the normalizing equation. 
 

The behavior of ( )n

M for the four-state regular MC suggests that as 

n→ , ( )n

M  will converge to a matrix Π  with identical rows. Each 

row of Π  is equal to the steady-state probability vector, π : 

( )

1 2

1 2

1 2

1 1

2 2
lim lim

L

n Ln

n n

LL L

  

  

  

→ →

  
  
  = = = =
  
  

   

π

π
M M Π

π

. 

Thus, Π  is a matrix with each row π  is equal to the steady-state 

probability vector. 

For the four-state MC model of the weather, the rows of ( )8

M  
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calculated above indicate that 

                        ( )0.2059 0.3658 0.2367 0.1916π .             (ii) 

For large n , the state probability ( )n

j
p  approaches the limiting 

probability 
j

 . That is, 
( ) ( )

lim lim
n n

j j ij
n n

p p
→ →

= = , for 1,2,...,j L= , 

and does not depend on the starting state. Thus, the vector π  of 

steady-state probabilities is equal to the limit, as the number of 

transitions approaches infinity, of the vector ( )n
P of state 

probabilities. That is, 
( )

lim
n

n→
=π P . 

 

Steady-State Probabilities for a Four-State Model of Weather 

     Two approaches to solving the steady-state equations will be 

illustrated by applying them to the four-state regular MC model of 

the weather for which the TPM is given as in formula (i). 

The first approach.  

The matrix form of the steady-state equations is  

  ( ) ( )1 2 3 4 1 2 3 4

0.3 0.1 0.4 0.2

0.2 0.5 0.2 0.1

0.3 0.2 0.1 0.4

0 0.6 0.3 0.1

       

 
 
 =
 
 
 

,    (iii) 

                                    ( )1 2 3 4

1

1
1

1

1

   

 
 
  =
 
 
 

. 

In algebraic form the system of steady-state equations (iii) of five 

equations in four unknowns is produced: 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 2 3 4

2 1 2 3 4

3 1 2 3 4

4 1 2 3 4

1 2 3 4

0.3 0.2 0.3 0

0.1 0.5 0.2 0.6

0.4 0.2 0.1 0.3

0.2 0.1 0.4 0.1

1

    

    

    

    

   

= + + +

= + + +

= + + +

= + + +

+ + + =

.         (iv) 

 

In this approach the fourth equation is arbitrarily deleted, and the 

resulting system of four equations in four unknowns is shown 

below: 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0.3 0.2 0.3 0
1 1 2 3 4

0.1 0.5 0.2 0.6
2 1 2 3 4

0.4 0.2 0.1 0.3
3 1 2 3 4

1
1 2 3 4

    

    

    

   

= + + +

= + + +

= + + +

+ + + =

 

The solution of this system is ( )1 2 3 4   =π  

                        ( )1407 6832 2499 6832 1617 6832 1309 6832=  

                        ( )0.2059 0.3658 0.2367 0.1916= .                 (b) 

This solution almost matches the approximate one obtained in 

formula (ii) by calculating ( )8
M . 

 

The second approach.  

The normalizing equation (a) is initially ignored. The first three 

equations contained in the system 

=π πM  
are solved to express 

1 2
,  , and 

3
  as the following constants times 

 
4

 : ( )1 4
1407 1309 = , ( )2 4

2499 1309 = , and ( )3 4
1617 1309 = .   
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These values for 
1 2
,  , and 

3
  expressed in terms of 

4
  are 

substituted into the normalizing equation to solve for 
4

 . 

           1 2 3 41    = + + + , 

( ) ( ) ( )4 4 4 41 1407 1309 2499 1309 1617 1309   = + + + . 

The result is ( )4 1309 6832 = . 
 

Substituting the result for 
4

  to solve for the other steady-state 

probabilities gives the values obtained by following the first 

 approach: 

( )1 1407 6832 = , ( )2 2499 6832 = , and ( )3 1617 6832 = . 
 

The steady-state probability 
i

  represents the long run proportion 

of time that the weather will be represented by state i . For 

example, the long run proportion of cloudy days is equal to 

( )3 1617 6832 0.2367 = = . 
 

Probabilities of n -step first passage 

To determine the probability that the first visit to state 1j =  will 

occur at time n , when the initial state is  1,2,3,4i SS = , in the 

four-state regular MC model of the weather. The TPM is given as 

in formula (i). If the state 1j =  (rain) is the target state, then 
 

( )( ) ( )( )

( )

( )

( )

( )

1

1111

1

2121(1)

1 1 1 1

4131

1

4141

1 0.3

2 0.2

3 0.3

4 0.0

n

i ii SS i SS

pf

pf
f P T n

pf

pf

 

     
     
     = = = = = =
     
     

   

f
, and 
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1 0 0.1 0.4 0.2

2 0 0.5 0.2 0.1

3 0 0.2 0.1 0.4

4 0 0.6 0.3 0.1

 
 
 =
 
 
 

. 

 

The vectors of n -step first passage probabilities, for 2,3n = , and 4, 

are calculated below, along with 1n− : 

 

            

( )

( )

( )

( )

2

11

2

21( 2) (1)

1 1 2

31

2

41

1 0 0.1 0.4 0.2 0.3 0.14

2 0 0.5 0.2 0.1 0.2 0.16

3 0 0.2 0.1 0.4 0.3 0.07

4 0 0.6 0.3 0.1 0.0 0.21

f

f

f

f

     
     
     = = = =
     
     

      

f f , 

           

( )

( )

( )

( )

3

11

3

21(3) ( 2)

1 1 3

31

3

41

1 0 0.1 0.4 0.2 0.14 0.086

2 0 0.5 0.2 0.1 0.16 0.115

3 0 0.2 0.1 0.4 0.07 0.123

4 0 0.6 0.3 0.1 0.21 0.138

f

f

f

f

     
     
     = = = =
     
     

      

f f . 

Alternatively, 

         

( )

( )

( )

( )

3

11

3

21(3) 2 (1)

1 1 3

31

3

41

1 0 0.25 0.12 0.19 0.3 0.086

2 0 0.35 0.15 0.14 0.2 0.115

3 0 0.36 0.17 0.10 0.3 0.123

4 0 0.42 0.18 0.19 0.0 0.138

f

f

f

f

     
     
     = = = =
     
     

      

f f . 

          

( )

( )

( )

( )

4

11

4

21( 4) (3)

1 1 4

31

4

41

1 0 0.1 0.4 0.2 0.086 0.0883

2 0 0.5 0.2 0.1 0.115 0.0959

3 0 0.2 0.1 0.4 0.123 0.0905

4 0 0.6 0.3 0.1 0.138 0.1197

f

f

f

f

     
     
     = = = =
     
     

      

f f , 

Alternatively, 
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( )

( )

( )

( )

4

11

4

21( 4) 3 (1)

1 1 4

31

4

41

1 0 0.263 0.119 0.092 0.3 0.0883

2 0 0.289 0.127 0.109 0.2 0.0959

3 0 0.274 0.119 0.114 0.3 0.0905

4 0 0.360 0.159 0.133 0.0 0.1197

f

f

f

f

     
     
     = = = =
     
     

      

f f . 

 

The probability that the chain moves from state 4 to target state 1 

for the first time in 4-steps is given by ( )4

41
0.1197f = . Therefore, the 

probability that the next rainy day (state 1) will appear for the first 

time 4 days after a sunny day (state 4) is 0.1197 . 
 

Mean recurrence time for weather MC model  

The first method . 

The following additional equation can be solved to calculate 11h , 

the mean recurrence time for state  1j = : 

( )
21

11 12 13 14 31

41

1

h

h p p p h

h

 
 

= +
 
 
 

. 

Then 11 12 21 13 31 14 411h p h p h p h= + + +  

              ( ) ( ) ( )21 31 411 0.1 0.4 0.2h h h= + + +  

              ( )( ) ( )( ) ( )( )1 0.1 5.3234 0.4 5.1244 0.2 6.3682 4.85574= + + + = . 

                  

The second method.  

      If the steady probabilities are known, the mean recurrence time 

11h  for a target state 1j =  is simply the reciprocal of the steady-

state probability 1  for the target state 1j = .  

The steady-state probability vector for the four-state regular 
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 MC for which the TPM is given as in formula (i), is obtained as in 

formula (b): 

( ) ( )1 2 3 4 0.2059 0.3658 0.2367 0.1916   = =π .  (b) 

Observe that 1 0.2059 = .  

Hence, the mean recurrence time for state 1j =  is, 

 11 11 1 0.2059 4.85574h = = = , 

which is close to the result obtained by the first method. 

Discrepancies are due to roundoff error. 


