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  حل معادلت شرودينجر وتطبيقاتها   -ت  لثالمحاضرة الثا

Application and solution of Schrödinger 

equation 

Transition motion  

1- The Particle in a One-Dimensional “Box” 

Imagine that a particle of mass m is free to move along the x 

axis between x =0 and x =L, with no change in potential 

(set )00 LxforV  . At x = 0 and L and at all points beyond 

these limits the particle encounters an infinitely repulsive barrier 

( )0 LxforV  ). The situation is illustrated in Fig. 1. 

Because of the shape of this potential, this problem is often 

referred to as a particle in a square well or a particle in a box 

problem. It is well to bear in mind, however, that the situation is 

really like that of a particle confined to movement along a finite 

length of wire, and the motion of electrons in chemical system 

such as 1, 3 butadiene and its similar. 

 

Fig 1 

The independent Schrödinger equation for this system is  
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We have two cases  

A- First, if the particle in region I , III or at the wall i. e. 

)0 Lxfor   then V the Schrödinger equation becomes 
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The only solution of this equation is 0 , this means that the 

particle is Schrödinger equation becomes not excited in this 

position    

B- Secondary, if the particle in region II i. e. )0( Lx   then 

0xV  Schrödinger equation becomes 

)4(0
8

2

2

2

2

 xxE
h

m

dx

d



 

To solve this equation put  
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Then   )7()( 2/1 


i
dx

d
  

)8()( 2/1 dxi
d





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)9()(ln 2/1 Qxix     

Where Q constant 

This equation can write as 

xi
x

Qxi
x eAoree

2/12/1       

And then substituted by value of   then 

)10(
2/122 )/8( xhmEi

x
xeA

 
         

where QeA   

Equation 10 is called Euler theorem and solved as Euler rule as  

)11(sincos xxe xi    

  Appling this rule on equation 10 under boundary condition 

0xat  and 0x  we get  

)12(cossin xBxAx    

   So then  

)14(0sin xA                 or  )15(0cos xB   

But 1cos x  

then B should be equal zero )0( B  then  

xAx  sin  

 And then put the value of    we get  

)16(0)/8sin( 2/122  LhmEA xx   

)17(0)/8(0sin 2/1221  LhmEx  
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But  netc  3,2,0sin 1  

Where n is an integral number and not equal zero (principal 

quantum number) then  

)18()/8( 2/122 LhmEn x       Or 

)19(
8 2

22

mL

hn
En   

Equation 10 is the eigenfunction and equation 19 is the related 

eigenvalue of energy 

From equation 19 we concluded that    

(I) The Value of nE decrease with increasing 2L if the other 

variables are constant, So, if L is very long then En too 

small then called the particle is delocalized such as 

 bond in chemical compound, and if L is small then En 

s high then particle is localized such as   bound. As 

you known that the excitation energy of    bound is 

less than those of   bound for this reason. 

(II) Appearance of  principal quantum number (n) 

automatically and nEn  this means that the energy 

increase with increasing value of n, and also 

described the number of nodes, for example n=1 no 

nodes and in for n = 2 only one node and n = 3 we 

get two nodes and so on... 

(III)  the energy of the system is discrete an d not continuous, 

E for n= 1, 2, 3 , 4 is  
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But for large particles the value Planck constant (h) is very 

small and the quantum rule completely falls, the particles 

obey the classical mechanics. If the particles move free (i. e. 

)L  this chemically the electron leaves the atom, the 

energy level is becomes closed to each other this called also 

continuous spectra.    

(IV)  the wavefunction in region II never equal zero  ( )0  

them also n never equal zero( 0n ), this means that 

the ground state have energy  

           )20(
8 2

2

1
mL

h
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And this is one of difference between classical and quantum 

treatment.   

 

 

Now we should calculate the constant A in equation 10 as 
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xhmEA xx
2/122 )/8sin(    
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Then substituted the value of Ex in former equation we get 

xmLhnhmAx
2/122222 )]8/)(/8sin[(    

xLnAx
2/1222 )/(sin    

)21()/sin( xLnAx    

Then put LnG /  in equation 21 then  

)22(sin xGA xx   

But the wavefunction should be normalized i. e,  

)23(12
 dx  

With compensation by equation 21 in equation 23 we have 
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Then by integration, we get 
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and compensation of xG  the equation becomes  
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42
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but 0sin n  then  

)26(1
2
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 i. e, 

)27(/2 LA   
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Then substituted the value of constant (A) in eqn.27 to eqn. 10 the 

normalized wanefunction which described the motion of particles in 

one dimension is  

)28(sin
2

L

xn

L
x


   

and for a system with constant mass and volume of box, the energy  

)29(2nkEn    

Where k is constant and equal 
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Also from equation 28 the conditions for formation of nodes is  

Or
L

xn



4,3,2,,0           )30(

3
,

2
,,0

n

L

n

L

n

L
x   

Which the condition gives   always equal zero (see next figure), 

example for 11 thenn have two nodes at Lxandx  0 but for 

wavefunction 22 nand  have a three nodes at 

LxandLxx  2/,0  and so on 
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C- Eigen Value for momentum: the momentum of particles 

moves a long x axis can be write as  
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D- Probability density for position of particle in box: From 

the meaning of probability equal  

2
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From equation 32, the maximum probability density at angles 

equal or distance 
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From this table, at 1n the most probable find particle at Lx
2

1
  

i. e. at the medal of the box, and 2n  the most probable find 

particle at LandLx
4

3

4

1
  

and so on, and by increasing the value of n number of 

probability increases and thatched (closed together ) and the 

probability of find the particle is equal at any point in box, and 

then the wave property is fail and becomes a macroscopic 

object, i. e. classical particles.       

Example 4 

What the probability to fine the particle moves in box in one 

direction from 10/0 Lxtox  , for levels 3,2,1n ?  

Solution  

The wavefunction of this particle is 
L
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 To integrate this equation you obey  
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2- Particle in three dimensional box:  

Schrödinger equation for this system becomes  
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to solve this  equation you first separate the variables for one 

variable only as 
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this three equation like motion in one dimension as we solve 

before then the solution of them is 
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Example: 5  

The energy level for particle in cube for levels 1, 2, 3 is [n may 

be]  
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This three wavefunction with one value of energy this called 

degenerate or three degenerates, and chemically means three 

levels with the same energy 

3- Free particle: 

 In this system the particle move along L  or the volume of 

box is finite then the wavefunction 0  and also the 

probability 02   in any position in box. The Schrödinger 

equation for this system becomes 
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Then the integration of this case in finite if the 0  and then 

the probability to fined the particle in any place is equal (or the 

same) this means we can't determine the position of particle.   

Example 6  
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A particle with mass m move in cube with length L and have [2-

3-4] quantum numbers, fined the degree of degenerate and the 

energy values? 

Solution  

Now the zyx nnn ,,  may be taken this values 
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So a 6 function have the same energy then called six 

degenerates  

Example 7 

1-3 butadiene's can be considered as a particle move in box, 

which contains a two   electron bond, this like a particle move 

in cube, you can make approximate which move in one 

dimensional (linear),[ but actually the compound in cis and trans 

forms], under this condition calculate the ground energy and the 

energy required to transition to next level and compare this 

result with ethylene and propene? [Length of CCCC  , is 

0.148, 0.134 nm respectively, Me =9.1x 10
-31

kg and c= 
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2.998x10
8
 m/s and h=6.626x10

-34
J s

-1
and Js

-1
=kg m s

-1
] 

comment in your results? 

Solution 

In 1-butadiene: contains boundbonds  12   then the distance 

available for electrons move is      nmxL 416.0148,0134.02   

The energy of first state is 
2

22

1
8mL

hn
E   

Jx
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x
E 19

2931

234

1 10476.3
)10416.0(1011.98

)1062.6(1 






 

 

The energy of second state (n =2)   

JxxxEE 1919
12 10904.1310476,344    

The energy difference JxEEE 19
12 10428.10     

In propene: contains boundbonds  1  then the distance 

available for electrons move is      nmL 282.0148,0134.0    

The energy of first state is 
2
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1
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)10282.0(1011.98
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The energy of second state (n =2)   

JxxxEE 1919
12 10248.3010562.744    

The energy difference  

JxEEE 19
12 10686.22   
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In ethylene: contains only  bonds  then the distance available 

for electrons move is  nmL 134.0  

The energy of first state is  

Jx
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x
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The energy of second state (n =2)   

JxxxEE 1919
12 10004.13210001.3344    

The energy differences JxEEE 19
12 10003.99   

It possible to convert this energy by means of wave length using 

this relation Ehc /  

compound E1 x 10
-19

   J E2 x 10
-19

   J Δ E x 10
-19

   J 

ethylene 

Propene 

ethylene 

33.001 

7.562 

3.476 

132.004 

30.248 

1.904 

99.003 

22.686 

10.428 

 

From these results we concluded that the excitation energy 

decrease as the distance of motion increase by other meaning the 

1-3 butadienes is less localized  

Example: 8 

When the particle is in ground state (n = 1). What is the 

probability of finding it in the left quarter of the wall, 

between ?)4/1(0 Lx   what is the probability of finding the 

particle between? ?)4/3()4/1  xL  
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Solution:  
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1
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
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
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Where as we expected is 0.25 classically.  By symmetry the 

probability of finding the particle between  ?)4/3( LxL   is 

also 0.09, so the probability of finding between 

?)4/3()4/1(  xL  is p = 1-22(0.09) = 0.82  

Example: 9 

An electron is confined in a finite square well. In the ground 

state 1s energy is 1eV. What is the width of the well? How 

much energy is required to excite the electron from ground state 

to the second excited state (n = 3)?    

Solution  

mx
eVJxeVxkgx

sJx

mE

hn
L

mL

hn
En

19

1931

34

22
2

2

22

108.3
)/106,11)(1011.9(8

).1063.6(1

8
,

8
2











  

eVxnEEnmL 991,614.0 2
13   

The lowest energy for a particle in an infinite is 22
1 8/ mLhE  . 

This is called zero point energy, and is not zero. This means that 

even that at absolute zero of temperature, a particle confined a 

finite region of space can never be rest, contrary to the classical 

idea of absolute zero. Further, such a particle can not travel at 

any possible speed, but rather it can have only the speeds 
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determined by 2)2/1( muEn  . It is hard to understand this 

intuitively, since none of us has ever seen such strange behavior 

firsthand.      

Example 10 

A microscopic dust particle of mass 2 x 10
-8

 kg is confined to a 

box of width 1 mm. What is the minimum speed it can be have? 

If the speed of the particle is 0.1 mm/s, what state is it in? 

Solution 

222
1 8/)2/1( mLhmuE   

smx
mkgx

sJx

mL

h
u /1066.1

)001.0()102(2

.1063.6

2

23

8

34






  

You can see that for all particle purposes, even a particle as 

small as a speck of dust is at rest in its ground state. In the nth 

state  

h

mlu
normLhnmuEn

2
8/)2/1( 2222    

18

34

438

106
1063.6

)/10)(10)(102(2
x

x

smmkgx
n 





 

At such high quantum number, transition from a state n +1 to n 

is not observable on macroscopic scale. Further the wave 

function goes through so many oscillations in the width of the 

well that the probability density is essentially constant across the 

well, in agreement with what we expect classically. This is an 

example of Bohr's correspondence principle, which states that 

quantum mechanical behavior must agree with classical theory 

in the limit of very high quantum number.      
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