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Application and solution of Schrodinger

equation

Transition motion

1- The Particle in a One-Dimensional “Box”

Imagine that a particle of mass m is free to move along the x
axis between x =0 and x =L, with no change in potential
(setv =0for0<x=<L). At x =0 and L and at all points beyond
these limits the particle encounters an infinitely repulsive barrier

(V=wfor0>x>L)). The situation is illustrated in Fig. 1.

Because of the shape of this potential, this problem is often
referred to as a particle in a square well or a particle in a box
problem. It is well to bear in mind, however, that the situation is
really like that of a particle confined to movement along a finite
length of wire, and the motion of electrons in chemical system
such as 1, 3 butadiene and its similar.
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Fig 1

The independent Schrddinger equation for this system is



d? 87°m
dx'z” #=7 EeVdyy =0 )

We have two cases

A- First, if the particle in region | , I11 or at the wall i. e.
for0>x>L) then V =« the Schrodinger equation becomes

d2y N 872m

dXZ h2 (_OOWX) :O (2)
h?  d2%y
om0 O

The only solution of this equation isy =0, this means that the
particle is Schrddinger equation becomes not excited in this
position

B- Secondary, if the particle in region Il i. e. (0<x <L) then

V, =0 Schrddinger equation becomes

d? 87°m
dxl/zj + h2 Ex wx =0 (4)
To solve this equation put
2
a:87r mE, then s I::d_l//
h? dx

d¥ dF dF dy _ . dF
dx? dx dy dx dy
by substituted inegn.4and int egration

F—=—ay or [ FdF =—af ydy (5)
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And F =iaw7 or F=ti(a)"?y (6)



Then ¥ 4] () 2y (7)
dx
d .
7"” — +i () 2dx 8) and

Iny, =+i(a)"?x+Q (9)
Where Q constant

This equation can write as

- 12 12
v, —etla er or v, — Aetlax

And then substituted by value of « then
v, = Aeii(SﬁZmEX/hz)ll 2x (10)
where A=e®
Equation 10 is called Euler theorem and solved as Euler rule as
eH ¥ —cosax + sin ax (11)
Appling this rule on equation 10 under boundary condition

atx=0 and w, =0 we get

v, = Asina x+ Bcosa x 12)
So then
Asinax =0 (14) or Bcosax =0 @s)

But cosax =1

then B should be equal zero (B =0) then
v, = Asin a X

And then put the value of « we get

v, =Asin(@7°mE, /h?)Y2L =0 (16)

sint0=(8z°mE, /h*)Y2L =0 17)



But sin0=x,27,37etc=nzr
Where n is an integral number and not equal zero (principal

quantum number) then

n 7z =@87°mE, /h?)Y2L @s) Or
212
n“h
E, = 19
Ry (19)

Equation 10 is the eigenfunction and equation 19 is the related
eigenvalue of energy
From equation 19 we concluded that

(1) The Value of E, decrease with increasing L?if the other

variables are constant, So, if L is very long then E, too
small then called the particle is delocalized such as
zbond in chemical compound, and if L is small then E,
s high then particle is localized such as o bound. As
you known that the excitation energy of ~ bound is
less than those of o bound for this reason.

(I1) Appearance of principal qguantum number (n)

automatically and E,an this means that the energy

increase with increasing value of n, and also
described the number of nodes, for example n=1no
nodes and in for n = 2 only one node and n = 3 we
get two nodes and so on...

(111) the energy of the system is discrete an d not continuous,
Eforn=1,2,3,4is
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But for large particles the value Planck constant (h) is very
small and the quantum rule completely falls, the particles
obey the classical mechanics. If the particles move free (i. e.
L =) this chemically the electron leaves the atom, the
energy level is becomes closed to each other this called also
continuous spectra.

(IV) the wavefunction in region Il never equal zero (y =0)
them also n never equal zero(n =0), this means that
the ground state have energy

h2
 8mL?

= (20)

And this is one of difference between classical and quantum

treatment.

Now we should calculate the constant A in equation 10 as



v, =Asin(87°mE, /h?)2x
n2h2
" 8mL?
Then substituted the value of E, in former equation we get

EX

v, =Asin[(8z°m/h?)(n*h? /8mL?)] Y/?x

v, =Asin(n® 72/ 1%)Y2x

w, = Asin(nz /L)X (22)

Then put G=nzx/L in equation 21 then

v, = AsinG, x (22)

But the wavefunction should be normalized i. e,
[y dx=1 (23)

With compensation by equation 21 in equation 23 we have
L L
[ A%Sin®G,dx =1=A*[(1/2)(1-c0s2G,)dx
0 0

2L 2L
A—jdx—A—jcos2Gde
2 o] 2 (o]

Then by integration, we get

AL A®

sin2G, L=1 24
2 4G, X (24)

and compensation of G, the equation becomes
—— ——— sin2nz =1 (25)

but sinnz=0 then

2
% =1 (26) i. e,

A=.2/L (27)



Then substituted the value of constant (A) in egn.27 to eqn. 10 the
normalized wanefunction which described the motion of particles in

one dimension is

2 . mnx
= |—SIn—— 28
Wy \[ 1 (28)

and for a system with constant mass and volume of box, the energy
E,=k n’ (29)

Where k is constant and equal

2
k= h 5
8mL
Also from equation 28 the conditions for formation of nodes is
X _0,7,27,37,47 Or x=0,L 2L 3L (3
L n n n

Which the condition gives y always equal zero (see next figure),
example for n=1then w;have two nodes at x=0 and x =L but for
wavefunction y,and n=2 have a three nodes at

x=0,x=L/2 and x=L and so on

wry | e — n=1
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C- Eigen Value for momentum: the momentum of particles

moves a long x axis can be write as

2 2112 2 2.2
n“z“h n“z<h
P2 =2mE, =2m -
X X 872 mL2 412

P =+ 31
x=Eo0 (31)

D- Probability density for position of particle in box: From
the meaning of probability equal

P09l (0 Then  p(x)=Zsin 1 (32)

From equation 32, the maximum probability density at angles

equal or distance

NnzX x 37 57 Trx
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Under this condition the value of \1//)((x)\2 =2—Ln always , next table

show that
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N
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From this table, at n=1the most probable find particle atx = % L

I. e. at the medal of the box, and n=2 the most probable find
particle atx = Liand3L
4 4

and so on, and by increasing the value of n number of
probability increases and thatched (closed together ) and the
probability of find the particle is equal at any point in box, and
then the wave property is fail and becomes a macroscopic
object, i. e. classical particles.

Example 4

What the probability to fine the particle moves in box in one

direction fromx =0to x = L/10, for levelsn=1, 2, 3?
Solution

The wavefunction of this particle is v, = \Esin zhx

L

- L/10 LI 5 nx 2
And the probability is P= [ y?dx= | (\EsinT) dx
0 0
2 L0 o (rnx : : :
P=E [ sin T dx To integrate this equation you obey
0



[sin?(cx)dx = X_ 1 inoex
2 4c
In former example

x=L/10 c:”T” then

P, _2 L—(Ljsin(zn—”j =[i—isinn—7[} then
L{20 \4nrx 10 10 2nrx 5

) = [i—isin 1} = 0.0064
10 2z 5

p,=| L1 gin 2% |_0.004
110 3« 5

P, = i—ising—” =05
10 67 5

2-Particle in three dimensional box:
Schrodinger equation for this system becomes

d’y d% d% 8z°m
e + dy2 + 2 + " Exy:=0 (29)

to solve this equation you first separate the variables for one
variable only as

d%y 8xz%m
2 + 2 E,=0 (30)
d?y 87°m
0y + 2 E, =0 (31
d%y 87°m
2 + 2 E,=0 (32)

this three equation like motion in one dimension as we solve

before then the solution of them is



znx

v, = Asin (33)
X

v, = Bsin ”L—”y (34)
y

w, =CsinT"% (35)

z

and the constants (A- B —C) is

A:F,B:F ,CZF 36)
L, L, L,

Finally the wavefunction in three dimension is

1/2
n
Vyyz = 222\ ginDa gin Dyr g Nea (37)
YL L L Lo L,

The eigenfunction for this system is

212
nzh? ngh® n2p?

E —
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h?|ng Ny 0

= |24 Y42 38
XY,z 8m[|_§ Li L§ ( )

and for cubic box where L% =L} =L; =L becomes

h (2 2. 2
E =——|ng +Nny +n
X,Y,Z 8mL2[ X y Z]
Example: 5

The energy level for particle in cube for levels 1, 2, 3 is [n may
be]

(n, =1, n, =1, n,=2)or(n,=2, n, =1,n, =1

or (n, =1, ny =2,n, =1) then

AR



he[1 1 47 4h°

Eppm | — 4= 4 7 | =
278m| 2 12 2] smL?
£ _h*f4 1 17 4n’
M7em 12 12 12] smL?

E —E[i.{.i.{.i} — 4h2
21 78ml 2 12 12] emL?

This three wavefunction with one value of energy this called

degenerate or three degenerates, and chemically means three
levels with the same energy

3- Free particle:

In this system the particle move along L=« or the volume of
box is finite then the wavefunction v —0 and also the
probability »? —0 in any position in box. The Schrodinger
equation for this system becomes

d? 87°m
dx"; += 7 By, =0

+i(87°mE, /h?)"2x
wy =Ae "

[Twrdx =1

Then the integration of this case in finite if the y =0 and then
the probability to fined the particle in any place is equal (or the
same) this means we can't determine the position of particle.

Example 6
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A particle with mass m move in cube with length L and have [2-
3-4] quantum numbers, fined the degree of degenerate and the
energy values?

Solution

Now the n,,n,,n, may be taken this values

234 — 243—-324 —342 —-432—- 423

But
2 2 2 2
E:8mL2[nX+ny+nZ]
h? 29h? h? 29h?
Eygy =——[4+9+16]=——, E;y3=——5[4+9+16]=
234 8mL2[ ] smL2’ 8mL2[ ] 8mL2
h? 29h? h? 29h?
Esy = 4+9+16]=——, Eqp = 4+9+16]=
324 8mL2[ | smL2’ * 8mL2[ | 8mL2
h? 29h? h? 29h?
E = 4+9+16]=——, Epn= 4+9+16]=
132 8mL2[ ] sm2’ *# 8mL2[ | 8mL2

So a 6 function have the same energy then called six
degenerates

Example 7

1-3 butadiene's can be considered as a particle move in box,
which contains a two ~ electron bond, this like a particle move
in cube, you can make approximate which move in one
dimensional (linear),[ but actually the compound in cis and trans
forms], under this condition calculate the ground energy and the
energy required to transition to next level and compare this

result with ethylene and propene? [Length of C-C ,C=Cis
0.148, 0.134 nm respectively, M, =9.1x 10°'kg and c=

'Y



2.998x10° m/s and h=6.626x10"*J s'and Js'=kg m s7]
comment in your results?

Solution

In 1-butadiene: contains 2z bonds +1cbound then the distance
available for electrons move is L =2x0.134+0,148=0.416nm

n’h?
8mL?

The energy of first state is E, =

1(6.62x1034)2

_ -19
= > 5 =3476x107°
8x9.11x107°1(0.416 x10~°)

1

The energy of second state (n =2)

E, =4E, =4x3,476x10*° =13.904x10 ™ J

The energy difference AE =E, — E, =10.428x10°J

In propene: contains zbonds +1cbound then the distance
available for electrons move is L =0.134+0,148=0.282nm

2142
The energy of first state is E :”_hz
8mL

1(6.62x10734)?

-19
= > 55 = 7.562x107°)
8x9.11x10731(0.282x10~°)

The energy of second state (n =2)
E, =4E, =4x7.562x10*° =30.248x10°J
The energy difference

AE =E, — E, =22.686x10°J

¢



In ethylene: contains only zbonds then the distance available
for electrons move is L =0.134nm
The energy of first state is

_ nh?
8mL?

E

1(6.62x10734)?

= — 5 =33.001x107°J
8x9.11x107°7(0.134x1077)

The energy of second state (n =2)
E, =4E, =4x33.001x10*° =132.004x107%°J
The energy differences AE =E, — E; =99.003x107°J

It possible to convert this energy by means of wave length using
this relation A=hc/E

compound Eix10™ J E,x 10" J AEx10" )
ethylene 33.001 132.004 99.003
Propene 7.562 30.248 22.686
ethylene 3.476 1.904 10.428

From these results we concluded that the excitation energy
decrease as the distance of motion increase by other meaning the
1-3 butadienes is less localized
Example: 8
When the particle is in ground state (n = 1). What is the
probability of finding it in the left quarter of the wall,
between 0< x> (1/4)L? what is the probability of finding the

particle between? 1/4)L < x = (3/4)?

\o




Solution:

(LI4) - 2 Lia_. of 7X 2 Lia)l 27zxj
= dx =— sin“| — |dx=— —[1—cog — |dx
P=lo V= 1k (Lj Lo ol { L

L/4
1 x—isin(Z—”"j =1(E—Lj=o.09
" 2z UL )|, L4 2z

Where as we expected is 0.25 classically. By symmetry the

probability of finding the particle between (3/4)L<x=L?is

also 0.09, so the probability of finding between

A/4)L < x> (3/4)? is p = 1-22(0.09) = 0.82

Example: 9

An electron is confined in a finite square well. In the ground
state 1s energy is 1eV. What is the width of the well? How
much energy is required to excite the electron from ground state
to the second excited state (n = 3)?

Solution

n’h? 2 n’h?

225515'“ " 8mE i
1(6.63x10734J.5)

© 8(9.11x10~%'kg)(1eVxL6x10 7 I /eV)

E

n

—3.8x10m

L-=0.614nm, E; = E;n? =1x9 =9V

The lowest energy for a particle in an infinite isE, =h?/8mL?.
This is called zero point energy, and is not zero. This means that
even that at absolute zero of temperature, a particle confined a
finite region of space can never be rest, contrary to the classical
idea of absolute zero. Further, such a particle can not travel at

any possible speed, but rather it can have only the speeds

1



determined byE,=@/2)mu?. It is hard to understand this
intuitively, since none of us has ever seen such strange behavior
firsthand.

Example 10

A microscopic dust particle of mass 2 x 10 kg is confined to a
box of width 1 mm. What is the minimum speed it can be have?
If the speed of the particle is 0.1 mm/s, what state is it in?
Solution

E, = (1/2)mu? =h?/8mL?

h 6.63x10734J s

U= = - ~1.66x10"°m/s
2mL ~ 2(2x10~®)kg(0.001)m

You can see that for all particle purposes, even a particle as
small as a speck of dust is at rest in its ground state. In the nth
state

E, = (1/2)mu® =n*h?/8mL* orn =%

o 2(2x10"8kg)(103m)(10*m/s)

_ 18
6.63x10734 =6xd0

At such high quantum number, transition from a state n +1 to n
IS not observable on macroscopic scale. Further the wave
function goes through so many oscillations in the width of the
well that the probability density is essentially constant across the
well, in agreement with what we expect classically. This is an
example of Bohr's correspondence principle, which states that
quantum mechanical behavior must agree with classical theory

in the limit of very high quantum number.
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