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10.1 Comparison with Analytic Functions
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Harmonic Functions

In Chapter 5, we saw that if an analytic function has a continuous second
derivative, then the real (or imaginary) part of the function is harmonic. In
Chapter 8, it was shown that all analytic functions are infinitely differentiable
and in particular, have continuous second derivatives. Thus, the real part of
an analytic function is always harmonic.

In this chapter, we examine the extent to which the converse is true. In
simply connected domains, we show that every harmonic function is the real
part of some analytic function. This result enables us to prove several theorems
for harmonic functions that are analogous to theorems for analytic functions.
In particular, an analog to Cauchy’s integral formula, known as Poisson’s
integral formula, gives a method for determining the values of a harmonic
function inside a disk from the behavior at its boundary points.

10.1 Comparison with Analytic Functions

Recall that a continuous real-valued function u(x, y), defined and single-valued
in a domain D, is said to be harmonic in D if it has continuous first and second
partial derivatives that satisfy Laplace’s equation

Ugy + Uyy = 0.

In Section 5.3, we illustrated how the Cauchy—Riemann equations might be
used to construct a function v(x,y) conjugate to a given harmonic function
u(z,y); that is, a function v(z,y) was found for which f(z) = wu(z,y) +
w(z,y) = u(z) + iv(z) was analytic. The method entailed finding all func-
tions v(z) satisfying the two conditions

Up = Vy, Uy = —Vg.

This method was successful when the partial integration [ v, dy could explic-
itly be solved. We now give general conditions for the existence of an analytic
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function whose real part is a prescribed harmonic function. First note that in
view of the Cauchy-Riemann equations, the derivative of any analytic func-
tion f(z) = u(z) + iv(z) may be expressed as

f'(2) = ua(z) — duy(2).
Hence we can find f (by integration) directly from u. The details follow.

Theorem 10.1. If u is harmonic on a simply connected domain D, then there
exists an analytic function on D whose real part equals u.

Proof. Set g(2z) = ug(2) — iuy(z) := U(z) + 1V (2), z € D. Then by Laplace’s
equation,

Up — Vy = Uz — (—uyy) = 0. (10.1)
Since the mixed partial derivatives of u(z) are continuous in D,
Uy + Ve = (ug)y + (—uy)z = 0. (10.2)

But (10.1) and (10.2) are the Cauchy—Riemann equations for g = U + iV.
Noting that U,,U,, V,,V, are all continuous, we may apply Theorem 5.17 to
establish the analyticity of g(z) in D.

Next choose any point zp in D, and set

re) = [ Q) dc.

20
Then, by Corollary 8.15, F'(z) is analytic in D with
F'(2) = 9(2) = ug(2) — iuy(2).

Observe that the derivative of F'(z) may also be expressed as

F'(z) = %ReF(z) — i(%ReF(z).

Thus u(z) and Re F'(z) have the same first partial derivatives in D, so that
Re F(z) = u(z) + ¢ (c a real constant).

Hence, the function

is analytic in D with Re f(z) = u(2). n

Corollary 10.2. If u is harmonic on a simply connected domain D, then
there exists an analytic function on D whose imaginary part equals u.
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Proof. By Theorem 10.1, there exists an analytic function h(z) such that
Reh(z) = u(z). But then f(z) = ih(z) is analytic with Im f(z) = Reh(z) =
u(z). ]

Example 10.3. Let u(z,y) = sin x cosh y + cos z sinh y + 22 — % +2zy. It can
be easily seen that w is harmonic in C. Following the proof of Theorem 10.1,
['(2) = uy —iuy, = cosz coshy — sinxsinhy + 2z + 2y
—i (sinz sinh y + cosz coshy — 2y + 2x).
As cos(iy) = coshy and —isin(iy) = sinhy, we can simplify the last equation

and obtain
f(z) = (1 —i)(cos z + 22).

Thus, f(z) = (1 —i)(sinz + 22) +c. °

The requirement in Theorem 10.1 that the domain be simply connected is
essential. For example, the function

u(z) =u(z,y) =Inva? +y? =In|z|

is harmonic in the punctured plane C\{0}. Each point in C\{0} has a neigh-
borhood where log z has a single-valued analytic branch. In other words, we
say that u(z) is locally the real part of an analytic function as guaranteed
by Theorem 10.1. Therefore, u(z) = In|z|, being the real part of an analytic
function, is harmonic in such neighborhoods. We also know that the principal
logarithm Log z defined by

Logz = In|z| + iArg z
is analytic in the cut plane D = C\(—o0,0]. Now if some function
f(z) = Infz] +iv(z)
were analytic throughout the punctured plane C\{0}, then g defined by
9(2) = f(z) — Logz

would be analytic in the slit plane D = C\(—o0,0]. Since g(z) is purely
imaginary in D, an application of the Cauchy—Riemann equations shows that
g(z) must be constant in D. Thus, any function analytic in D whose real part
is In |z| must be of the form

u(z) +iv(z) = Logz + ic,
where c is a real constant. It follows that v(z) = Argz -+ c. But then

lim v(—=1+1iy) = lim Arg (-1+iy)+c=7m+c
y>0 ¥>0
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and
lim v(—1+iy) = lim Arg (=1 +iy) +c=—m+c
y— y—

y<0 y<0

which means that v is discontinuous at —1, a contradiction. An argument
similar to this shows that v is not continuous at all points in the negative
real axis (—oo,0]. Thus, there is no hope for defining an analytic function in
C\{0} whose real part is u(z) = In|z|. Hence, a harmonic function need not
have an analytic completion in a multiply connected domain.

In view of Theorem 10.1, we may now modify some of the theorems in
Chapter 8 to obtain harmonic analogs. Our next theorem is the harmonic
analog of Liouville’s theorem.

Theorem 10.4. A function harmonic and bounded in C must be a constant.

Proof. Suppose u(z) is harmonic and bounded in the plane. Theorem 10.1
guarantees the existence of an entire function f(z) whose real part is u(z).
But then

g(z) = e/

is an entire function too. Since |g(z)| = ¢“*), g(z) is also bounded in the plane.
By Liouville’s theorem g(z), and hence u(z) = In|g(z)|, must be constant. =

Clearly, Theorem 10.4 may be restated in a general form as follows:

Theorem 10.5. If the real or imaginary part of an entire function is bounded
above or below by a real number M, then the function is a constant.

We now prove an analog to Gauss’s mean-value theorem for analytic func-
tions. This is one of the fundamental facts about harmonic functions, called
the mean value property of harmonic functions.

Theorem 10.6. (Mean Value Property) Suppose u(z) is harmonic in a do-
main containing the disk |z — zo| < R. Then

1
2

27
/ u(zo0 + Re') db.
0

u(zo) =

Proof. Let f(z) be a function analytic in |z — 29| < R whose real part is u(z).
By Gauss’s mean-value theorem,

1 [ ,
fa0) = - i f(z0 + Re™) do.
The result follows upon taking real parts of both sides. ]

The right-hand side of the last formula gives in particular that the mean
(or average) value u on the circle |z — 29| = R is simply the value of u at the
center of the circle |z — zg| = R. In Section 10.2, we shall consider a similar
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expression for a point of the disk |z — zg] < R other than the center. We
have shown that the behavior of a harmonic function on the boundary of a
closed and bounded region determines the behavior of the harmonic function
throughout the region. For instance, a harmonic function v in the unit disk
|z| < 1 that extends continuously to |z| < 1 is completely determined by
its values on the boundary |z| = 1. The explicit formula for the value of
u for each point in |z| < 1 is given by the Poisson integral formula for a
harmonic function and this is the subject of the discussion in Section 10.2.
Unlike the situation for analytic functions, this result cannot be improved to
an arbitrary sequence of points in the region. For instance, the nonconstant
function u(z) = z is harmonic in the plane with u(z) = 0 on the imaginary
axis. Hence, “analytic” cannot be replaced with “harmonic” in the statement
of Theorem 8.47. That is, even if u(z) is harmonic in a domain D, u(z,) = 0,
and z, — zo in D, we are not guaranteed that u(z) = 0 in D. Thus, the
analog of the identity principle (see Theorem 8.48) for analytic functions does
not hold for harmonic functions. However, we can salvage the following:

Theorem 10.7. Ifu(z) is harmonic in a domain D and constant in the neigh-
borhood of some point in D, then u(z) is constant throughout D.

Proof. Let A be the set of all points zo in D for which u(z) is constant in
some neighborhood of zj. Clearly A is a nonempty open set. To prove that
A = D, it suffices to show that B = D\A is open, for then B would have to
be empty in order for D to be connected.

Suppose B is not open. Then for a point zp in B and an ¢ > 0 there is
a point z; in A such that z; € N(zp;¢) C D. Since A is open, we can find
a ¢ > 0 sufficiently small so that N(z1;0) C N(z0;€) N A. Now construct an
analytic function f(z) such that

Re f(z) = u(z) for all z in N(zp;e€).

Since u(z) is constant in N(z1;9), f/'(2) = 0 for z in N(z1;6). An application
of Theorem 8.47 to f’(z) shows that f/(z) = 0 throughout N(zg;e€). Then,
by Theorem 5.9, f(z) is constant in N(z,;€). Hence, u(z) = Re f(z) is also
constant in N (zp;¢€), contradicting the assumption that zy € B. [

Example 10.8. Suppose that u(z) is harmonic in a domain D such that the
set {z € D : uy(z) = 0 = uy(z)} has a limit point in D. Then we can easily
show that u(z) is a constant throughout D.

To see this, we define

F(z) = ug(2) —ituy(z), ze€D.

Then F is analytic in D and the set {z € D : F(z) = 0} has a limit point
in D. By the uniqueness theorem for analytic functions (see Theorem 8.47),
F(z) =0in D and so, uz(2) = 0 =u,(z) on D, i.e., u is a constant. n
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Analogous to the maximum and minimum modulus theorems for analytic
functions are the maximum and minimum principles for harmonic functions.
The fact that a harmonic function is locally the real part of an analytic func-
tion produces a number of important results. One of them is the maximum
principle.

Theorem 10.9. (Maximum Principle for Harmonic Functions) A noncon-
stant harmonic function cannot attain a maximum or a minimum in a do-
main.

Note that a harmonic function u(z) attains a maximum at a point zq if and
only if the harmonic function —u(z) attains a minimum at zg. So the minimum
principle can be derived directly from the maximum principle. This result has
several proofs.

Proof. The maximum modulus theorem for analytic functions is a direct con-
sequence of Gauss’s mean-value theorem and the fact that an analytic function
is continuous. Similarly, we may deduce the maximum principle for harmonic
functions from the mean-value principle for harmonic functions (Theorem
10.6). Indeed, we assume that u(z) attains the maximum at zo € D. Then,
for each r with 0 < r < dist (29, D), Theorem 10.6 gives

1 2 )
— (u(z0) — u(zo + Re®)) do = 0.

2T 0
Since u(zp) — u(zo + Re) is a continuous function of § and is nonnegative,

we have _
u(zo) = u(zg + Re®) for 0 <6 < 2m.

Thus, u(z) = u(zo) for all z in some neighborhood N(zo;d). Hence, u(z) =
u(z0) on D (see Theorem 10.7).

For a second proof, we assume that u(z) is a nonconstant function har-
monic in a domain D. Given zg in D, construct a function f(z) = u(z) +iv(2)
that is analytic in some neighborhood N (z¢;9) of zg.

We set g(z) = e/*), and note that |g(z)| = e**). If 2z, were a maximum
for u(z) in this neighborhood, then zy would be a maximum for |g(z)|. By
the maximum modulus theorem for analytic functions, the function g must
be constant on N(zg;0). Therefore, u is constant on N(zg;0) and hence on
D, which contradicts the assumption that u is nonconstant. The proof is
complete.

Alternatively, one could use the open mapping theorem (Theorem 9.55).
Then it follows that there exists an € > 0 such that N(f(zp);€) is contained in
the image of N(zp;0) under f(z). In particular, for some point z; € N(z;9)
we have Re f(z1) = u(z9) + €/2. Thus, 2o is not a maximum of u(z) in D. m

Observe that min{|f(z)| : z € D} may be attained at an interior point of
D without the analytic function f on D being constant. For example, consider
f(z) = z, for |z| < 1. Then, for |z| <r (r < 1),
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[f(2)] = |z] = 0 = |£(0)]

so that the minimum modulus of f(z) is attained at the interior point z = 0.
However, the maximum of |f(z)| on |z| < r is attained at z = r which is a
boundary point of |z] < r.

The minimum principle for harmonic functions is actually stronger than
the minimum modulus theorem for analytic functions. The hypothesis that the
function be nonzero in the domain is unnecessary for harmonic functions. Of
course, a harmonic function can assume negative values in a domain, whereas
the modulus of an analytic function cannot.

Corollary 10.10. Suppose u(z) is harmonic in a bounded domain D whose
boundary is the closed contour C. If u(z) is continuous in DUC, with u(z) =
K (K a constant) on C, then u(z) = K throughout D.

Proof. Since D U C forms a compact set, u(z) must attain a maximum and
minimum. By Theorem 10.9, the maximum and minimum cannot occur in D.
Thus, they must occur on C. But this means that maxu(z) = minu(z) = K.
Hence, u(z) = K throughout D. ]

The boundedness of D in Corollary 10.10 is essential. The domain
{z : Rez > 0} has the boundary {z : Rez = 0}. The function u(z) = =
is continuous for Rez > 0 with u(z) = 0 on the boundary. But u(z) # 0 for
Rez > 0.

Corollary 10.11. Suppose u1(z) and uz(z) are harmonic in a bounded do-
main D whose boundary is the closed contour C. If ui(z) and us(z) are
continuous in DU C, with ui(z) = uz(z) on C, then ui(z) = us(z) through-
out D.

Proof. Set u(z) = u1(2) — uz(2) and apply Corollary 10.10. ]

Example 10.12. Suppose that f(z) is an entire function such that f(z) is
real on the unit circle |z| = 1. Then f(z) is constant.

To see this, we set f = w + iv. By assumption, v(z) = 0 on |z| = 1.
By Corollary 10.10, v(z) = 0 for |z| < 1. Hence, f(z) is real for |z| < 1,
ie, f(Jz] < 1) € R. By the open mapping theorem, f must be constant
for |z| < 1. By the uniqueness theorem for analytic functions, f must be a
constant throughout C. ]

There is an interesting relationship between the maximum modulus of an
analytic function and the maximum of its real part.

Theorem 10.13. (Borel-Carathéodory) Suppose f(z) is analytic in the
disk |z| < R. Let M(r) = max,|—, | f(2)| and A(r) = max|,|—. Re f(2). Then
for0O<r <R,

2r R+r
< A(R)+ 17 (0)]
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Proof. If f(z) is constant (say f(z) = k), then the right-hand side is bounded
below by

— R+
kl=1kl=M
R R—T| | | | (T)7

and the result follows. Hence, we may assume that f(z) is nonconstant.
If f(0) =0, then by Theorem 10.9, A(R) > A(0) = 0. Since

Re {2A(R) — f(2)} > A(R) > 0

2r
k| +
—r

for |z| < R, and
2A(R) — f(2)]” = |f(2)* + 4A(R)[A(R) — Re f(2)] = |£(2)],
the function i)
z
1) = 5am) - 70
is analytic and |g(z)| < 1 for |z| < R. Then by Schwarz’s lemma,

max |g(2)| < r/R.

|z|=r
But
] = | AR  2AOE_ZA 10y

and the result follows when f(0) = 0.
Finally, if f(0) # 0, we apply (10.3) to f(z) — f(0). This leads to

2r 2r
£(2) = FO)] € 7 maxRe{f(2) ~ F0)} < 7= (A(R) +|£(O)]).
Thus
FE < (AR +FO)) + FO) = 2o AR+ S0 7(0)]
and the theorem is proved. ]

Theorem 10.13 may be used to generalize both Theorem 8.35 and Theorem
10.4 as follows.

Theorem 10.14. Suppose f(z) is an entire function and that Re f(z) < Mr*
for |z| = r > ro and for some nonnegative real number \. Then f(z) is a
polynomial of degree at most [)].

Proof. Set R = 2r in Theorem 10.13. Then

2 2
r A(Zr)—l— r+r

2r — 17 2r—r|f(0)| < 2(2r) M + 3| f(0)| < Myr?,

IF(2)] <

for M; sufficiently large. The result now follows from Theorem 8.35. ]
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Questions 10.15.

10.

11.

12.
13.

14.

15.

16.

17.
18.

19.

. When can we say In|f(z)| is harmonic? Where is it harmonic?
. In the proof of Theorem 10.1, where did we use the fact that the domain

was simply connected?

. What theorems are valid for disks but not for a simply connected do-

main?
Where was continuity of the second partial derivatives for harmonic
functions important?

. Can a nonconstant function harmonic in the plane omit more than one

real value?

Let f = u 4+ iv be analytic in a domain D. Is u,, harmonic in D7

Can the maximum modulus theorem for analytic functions be proved
using the maximum principle for harmonic functions?

. Suppose a function is harmonic in a domain D and continuous on its

boundary C. Must the function be continuous in D U C?

. For a harmonic function v in a domain D which vanishes in an open

subset of D, does u vanish identically in D?

Is there a relationship between the coefficients of an analytic function
and the maximum of its real part?

Why is Theorem 10.14 a generalization of Theorem 8.35 and Theorem
10.47

Is every harmonic function an open mapping?

Let 2 be a domain and u € C3(£2). If u is harmonic on 2, must u, be
harmonic on {27 Must u, be harmonic on {27

Note: C*(2) denotes the set of all functions u whose partial derivatives
of order k all exist and are continuous on (2.

What is the average value of the harmonic function u(z,y) = xy on the
circle (z —2)2 + (y + 1)2 =17

Let u(z) be harmonic on the disk |z| < r such that u,(z) = 0on |z| < r.
What can we conclude about u?

Let u be harmonic for |z| < 1. Suppose that {z,}n>1 is a sequence of
complex numbers not equal to zo such that z, — 2p in |z2| < 1 and
u(zn) = 0 for n € N. Must u be identically zero? If not, under what
additional assumption, do we get u = 07

Must a product of two harmonic functions u and v be harmonic?
Suppose that u is harmonic in a domain D and v is its harmonic conju-
gate. Must uv be harmonic on D? Must u? be harmonic on D?

We know that u(z) = In|z| is harmonic in the annulus D = {z: 1 <
|z| < 2}. Can u(z) have a harmonic conjugate on D?

Exercises 10.16.

1.

Show that a function harmonic in a domain must have partial derivatives
of all orders.
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2. If u(z) is nonconstant and harmonic in the plane, show that u(z) comes
arbitrarily close to every real value.

3. Prove the minimum principle directly by each of the three methods in
which the maximum principle was proved.

4. Show that foﬂ Insinf df = —x In 2 by applying the mean-value principle
to In |1+ z| for |z] <r < 1, and then letting r — 1.

5. Suppose f(z) and g(z) are analytic inside and on a simple closed contour
C, with Re f(z) = Reg(z) on C. Show that f(z) = g(z) + ¢f inside C,
where 3 is a real constant.

6. Generalize the previous exercise by showing that the conclusion still
holds if it is only assumed that f(z) and g(z) are analytic inside C' and
continuous in the region consisting of C' and its interior.

7. If u(z) is harmonic and bounded in the punctured disk 0 < |z —zg| < R,
show that lim,_,,, u(z) exists.

8. Suppose u1(z) and us(z) are harmonic in a simply connected domain
D, with uy(2)uz(z) = 0 in D. Prove that either ui(z) =0 or ua(z) =0
in D.

9. It is easy to see that u(z) = Im (H'Z

1—z
|z| < 1 and lim,_;- u(re?) = 0 for all §. Why does this not contradict
the maximum principle for harmonic functions? Is u continuous on |z| =
17

10. Does there exist a harmonic function in |z| < 1 taking the value 1
everywhere on |z| = 17 Is your solution unique?

11. Does there exist a harmonic function on the strip {z : 0 < Rez < 1}
with u(z,0) = 0 and u(x,1) = 1?7 Is your solution unique?

12. If u(z) = u(x,y) is harmonic in the plane with u(z) < |z|™ for every z,
show that u(z) is a polynomial in the two variables  and y.

13. Suppose that f(z) is analytic in the disk |z|] < R, and let A(r) =
max|.|—. Re f(z). Prove that for r < R,

2
) is harmonic in the unit disk

f™ ()] 2" R

max S S Ry (AN + O]}

10.2 Poisson Integral Formula

In this section, we shall attempt to find a harmonic analog to Cauchy’s integral
formula. If f is analytic inside and on a simple closed contour C, then

£(z) = — / 1©) 4 (10.4)

at all points z inside C. We would like to find an expression for Re f at points
inside C' in terms of the values of Re f on C. Unfortunately, the expression





