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11

Conformal Mapping and the Riemann
Mapping Theorem

Our study of mapping properties in Chapters 3 and 4 was limited because
derivatives had not yet been introduced. That remedied, we look anew at
some old functions. We shall see that the derivative relates the angle between
two curves to the angle between their images. In addition, the derivative will
be seen to measure the “distortion” of image curves.

Analytic functions mapping disks and half-planes onto disks and half-
planes, disks onto the interior of ellipses, etc., have previously been con-
structed. The major result of this chapter, known as the Riemann mapping
theorem, tells us that there is nearly always an analytic function that maps a
given simply connected domain onto another given simply connected domain.
This is a very powerful result and is used in a wide range of mathematical set-
tings. Our method of proof relies on normal families, a concept that enables us
to extract limit functions from families of functions. Recall how we previously
had extracted limit points from sequences of points (Bolzano–Weierstrass the-
orem).

11.1 Conformal Mappings

Any straight line in the plane that passes through the origin may be parame-
terized by σ(s) = seiα, where s traverses the set of real numbers and α is the
angle−measured in radians−between the positive real axis and the line. More
generally, a straight line passing through the point z0 and making an angle α
with the real axis can be expressed as σ(s) = z0 + seiα, s real.

Suppose now that a function f is analytic on a smooth (parameterized)
curve z(t), t ∈ [a, b]. Then the image of z(t) under f is also a smooth curve
whose derivative is given by f ′(z(t))z′(t). A smooth curve is characterized
by having a tangent at each point. So, we interpret z′(t) as a vector in the
direction of the tangent vector at the point z(t). Our purpose is to compare
the inclination of the tangent to the curve at a point with the inclination of
the tangent to the image curve at the image of the point.
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Let z0 = z(t0) be a point on the curve z = z(t). Then the vector z′(t0) is
tangent to the curve at the point z0 and arg z′(t0) is the angle this directed
tangent makes with the positive x-axis. Suppose that w = w(t) = f(z(t)),
with w0 = f(z0). For any point z on the curve other than z0, we have the
identity

w − w0 =
f(z) − f(z0)

z − z0
(z − z0).

Thus,

arg(w − w0) = arg
f(z) − f(z0)

z − z0
+ arg(z − z0) ( mod 2π ), (11.1)

where it is assumed that f(z) �= f(z0) so that (11.1) has meaning. Note that
arg(z− z0) is the angle in the z plane between the x axis and the straight line
passing through the points z and z0, while arg(w − w0) is the angle in the w
plane between the u axis and the straight line passing through the points w
and w0. Hence as z approaches z0 along the curve z(t), arg(z−z0) approaches
a value θ, which is the angle that the tangent to the curve z(t) at z0 makes
with the x axis. Similarly, arg(w − w0) approaches a value φ, the angle that
the tangent to the curve f(z(t)) at w0 makes with the u axis.

Suppose f ′(z0) �= 0 so that arg f ′(z0) has meaning. Then taking limits in
(11.1), we find (mod 2π) that

φ = arg f ′(z0) + θ, or arg w′(t0) = arg f ′(z0) + arg z′(t0). (11.2)

That is, the difference between the tangent to a curve at a point and the
tangent to the image curve at the image of the point depends only on the
derivative of the function at the point (see Figure 11.1).

For instance, consider f(z) = z2. Then f ′(z) �= 0 on C \{0}. Choose z0 =
1 + i. Then f ′(z0) = 2(1 + i) so that

arg f ′(z0) = (π/4) + 2kπ.

Figure 11.1. The direction of the tangent line at z(t)
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To verify the angle of rotation of a particular curve, we consider a simple
curve C passing through z0:

C : z(t) = t(1 + i), t ∈ R.

Clearly, π/4 is the angle which the curve C makes with the x axis. The image
of C under f(z) = z2 = (x2 − y2) + i(2xy) is given by w(t) = 0 + 2t2i. Thus,
the angle of rotation at 1 + i is π/2 which corresponds to the case k = 0.

If two smooth curves intersect at a point, then the angle between these
two curves is defined as the angle between the tangents to these curves at the
point. We can now state

Theorem 11.1. Suppose f(z) is analytic at z0 with f ′(z0) �= 0. Let C1 : z1(t)
and C2 : z2(t) be smooth curves in the z plane that intersect at z0 =: z1(t0) =:
z2(t0), with C ′

1 : w1(t) and C ′
2 : w2(t) the images of C1 and C2, respectively.

Then the angle between C1 and C2 measured from C1 to C2 is equal to the
angle between C ′

1 and C ′
2 measured from C ′

1 to C ′
2.

Proof. Let the tangents to C1 and C2 make angles θ1 and θ2, respectively, with
the x axis (see Figure 11.2). Then the angle between C1 and C2 is θ2 − θ1.

Figure 11.2. The curves C1 and C2 intersect at angle α

According to (11.2), the angle between C ′
1 and C ′

2, which is the angle between
the tangent vectors f ′(z0)z′1(t0) and f ′(z0)z′2(t0), of the image curves is

θ2 + arg f ′(z0) − (θ1 + arg f ′(z0) ) = θ2 − θ1,

and the theorem is proved.

A function that preserves both angle size and orientation is said to be
conformal. Theorem 11.1 says that an analytic function is conformal at all
points where the derivative is nonzero. We have already discussed a number
of examples of conformal maps without referring to the name “conformal”.
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For instance, f(z) = ez maps vertical and horizontal lines into circles and
orthogonal radial rays, respectively.

A function that preserves angle size but not orientation is said to be isog-
onal. An example of such a function is f(z) = z. To illustrate, z maps the
positive real axis and the positive imaginary axis onto the positive real axis
and the negative real axis respectively (see Figure 11.3). Although the two
curves intersect at right angles in each plane, a “counterclockwise” angle is
mapped onto a “clockwise” angle.

Figure 11.3.

Suppose f(z) is analytic at z0 and f ′(z0) �= 0. When z is near z0, there is
an interesting relationship concerning the distance between the points z and
z0 and the distance between their images. Note that

f(z) = f(z0) + f ′(z0)(z − z0) + ε(z)(z − z0)

where ε(z) → 0 as z → z0. Thus for z close to z0,

f(z) ≈ f ′(z0)z + (−f ′(z0)z0 + f(z0))

so that we may approximate f(z) by the linear function. Also,

|f(z) − f(z0)| ≈ |f ′(z0)| |z − z0| . (11.3)

In view of (11.3), “small” neighborhoods of z0 are mapped onto roughly the
same configuration, magnified by the factor |f ′(z0)|, see Figure 11.4. Hence,
f ′(z0) plays two roles in determining the geometric character of the image.
According to (11.2), arg f ′(z0) measures the rotation; according to (11.3),
|f ′(z0)| measures (for points nearby) the magnification or distortion of the
image.

An interesting comparison can now be made between the derivatives of real
and complex functions. For real differentiable functions, the nonvanishing of
the derivative is sufficient to guarantee that the function is one-to-one on an
interval. This is not the case for complex functions on a domain. Even though
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Figure 11.4.

the derivative of the entire function ez never vanishes, we have ez = ez+2πi

for all z. Similarly, the entire function f(z) = z2 is conformal on C \{0}.
However, it is geometrically intuitive (Figure 11.4) that the nonvanishing of
a derivative implies, at least locally, that the function is one-to-one. We now
show this formally in the following form which gives a sufficient condition for
the existence of a local inverse.

Theorem 11.2. If f(z) is analytic at z0 with f ′(z0) �= 0, then f(z) is one-
to-one in some neighborhood of z0.

Proof. Since f ′(z0) �= 0 and f ′(z) is continuous at z0, there exists a δ > 0
such that

|f ′(z) − f ′(z0)| <
|f ′(z0)|

2
for all |z| < δ.

Let z1 and z2 be two distinct points in |z| < δ, and γ be a line segment
connecting z1 and z2. Set φ(z) = f(z) − f ′(z0)z so that |φ′(z)| < |f ′(z0)|/2
for all |z| < δ. Now we have

|φ(z2) − φ(z1)| =
∣∣∣∣
∫

γ

φ′(z) dz

∣∣∣∣ < (|f ′(z0)|/2)|z2 − z1|,

or equivalently,

|f(z2) − f(z1) − f ′(z0)(z2 − z1)| < (|f ′(z0)|/2)|z2 − z1|.

Thus, by the triangle inequality, we obtain

|f(z2) − f(z1)| > (|f ′(z0)|/2)|z2 − z1| > 0.

That is, f(z) is one-to-one in |z| < δ .
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The vanishing of a derivative does not preclude the possibility of a real
function being one-to-one. Although the derivative of f(x) = x3 is zero at the
origin, the function is still one-to-one on the real line. That this cannot occur
for complex functions is seen by

Theorem 11.3. If f(z) is analytic and one-to-one in a domain D, then
f ′(z) �= 0 in D, so that f is conformal on D.

Proof. If f ′(z) = 0 at some point z0 in D, then

f(z) − f(z0) =
f ′′(z0)

2!
(z − z0)2 + · · ·

has a zero of order k (k ≥ 2) at z0. Since zeros of an analytic function are
isolated, there exists an r > 0 so small that both f(z)− f(z0) and f ′(z) have
no zeros in the punctured disk 0 < |z − z0| ≤ r. Let g(z) := f(z) − f(z0),
C = {z : |z − z0| = r} and

m = min
z∈C

|g(z)|.

Then, g has a zero of order k (k ≥ 2) and m > 0. Let b ∈ C be such that
0 < |b − f(z0)| < m. Then, as m ≤ |g(z)| on C,

|f(z0) − b| < |g(z)| on C.

It follows from Rouche’s theorem that g(z) and

g(z) + (f(z0) − b) = f(z) − b

have the same number of zeros inside C. Thus, f(z)− b has at least two zeros
inside C. Observe that none of these zeros can be at z0. Since f ′(z) �= 0 in the
punctured disk 0 < |z − z0| ≤ r, these zeros must be simple and so, distinct.
Thus, f(z) = b at two or more points inside C. This contradicts the fact that
f is one-to-one on D.

We sum up our results for differentiable functions. In the real case, the
nonvanishing of a derivative on an interval is a sufficient but not a necessary
condition for the function to be one-to-one on the interval; whereas in the
complex case, the nonvanishing of a derivative on a domain is a necessary but
not a sufficient condition for the function to be one-to-one on the domain.

An analytic function f : D → C is called locally bianalytic at z0 ∈ D
if there exists a neighborhood N of z0 such that restriction of f from N
onto f(N) is bianalytic. Clearly, a locally bianalytic map on D need not be
bianalytic on D, as the example f(z) = zn (n > 2) on C \{0} illustrates.

Combining Theorem 11.2 and Theorem 11.3 leads to the following criterion
for local bianalytic maps.

Theorem 11.4. Let f(z) be analytic in a domain D and z0 ∈ D. Then f is
bianalytic at z0 iff f ′(z0) �= 0.
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A sufficient condition for an analytic function to be one-to-one in a simply
connected domain is that it be one-to-one on its boundary. More formally, we
have

Theorem 11.5. Let f(z) be analytic in a simply connected domain D and on
its boundary, the simple closed contour C. If f(z) is one-to-one on C, then
f(z) is one-to-one in D.

Proof. Choose a point z0 in D such that w0 = f(z0) �= f(z) for z on C.
According to the argument principle, the number of zeros of f(z)−f(z0) in D
is given by (1/2π)
C {f(z) − f(z0)}. By hypothesis, the image of C must be a
simple closed contour, which we shall denote by C ′ (see Figure 11.5). Thus the
net change in the argument of w − w0 = f(z) − f(z0) as w = f(z) traverses
the contour C ′ is either +2π or −2π, according to whether the contour is
traversed counterclockwise or clockwise. Since f(z) assumes the value w0 at
least once in D, we must have

1
2π


C {f(z) − f(z0)} =
1
2π


C {w − w0} = 1.

That is, f(z) assumes the value f(z0) exactly once in D.

Figure 11.5.

This proves the theorem for all points z0 in D at which f(z) �= f(z0)
when z is on C. If f(z) = f(z0) at some point on C, then the expression

C {f(z) − f(z0)} is not defined. We leave for the reader the completion of
the proof in this special case.

In the proof of Theorem 11.1, we relied on the nonvanishing of the deriva-
tive. In Theorem 11.2, we see that every analytic function is locally one-to-one
at points where the derivative is nonvanishing. More generally, it can be shown
that if f is analytic at z0 and f ′ has a zero of order k at z0, then f is locally
(k + 1)-to-one. For example, if f(z) = z2, then f ′(z) has a zero of order 1 at
the origin and hence, it is two-to-one in any neighborhood of the origin.
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We now examine the behavior of an analytic function in a neighborhood
of a critical point, a point where the derivative vanishes. First we note that
the angle of intersection of two smooth curves at a critical point of an analytic
function is not the same as the angle of intersection of their images under f . If
f(z) is analytic and f ′(z) has a zero of order k− 1 at z = z0, then f (j)(z) = 0
for j = 1, · · · , k − 1 and so we may write

f(z) = f(z0) + ak(z − z0)k + ak+1(z − z0)k+1 + · · · .

Thus, f(z) − f(z0) = (z − z0)kg(z), where g(z) is analytic at z0 and g(z0) =
ak �= 0. Consequently,

arg[f(z) − f(z0)] = k arg(z − z0) + arg g(z). (11.4)

Suppose θ is the angle that the tangent to a smooth curve C at z0 makes with
the x axis, and φ is the angle that the tangent to the image C ′ of the curve
C at f(z0) makes with the u axis. If z approaches z0 along the curve C, then
w = f(z) approaches w0 = f(z0) along the curve C ′, and so (11.4) yields

φ = kθ + arg g(z0). (11.5)

Observe that (11.5) reduces to (11.2) in the special case when k = 1. In
general, the tangent to an image curve depends on the tangent to the original
curve as well as on the order and argument of the first nonzero derivative at
the point in question. Just as (11.2) led to Theorem 11.1, so (11.5) leads to

Theorem 11.6. Suppose f(z) is analytic at z0, and that f ′(z) has a zero of
order k − 1 at z0. If two smooth curves in the domain of f intersect at an
angle θ, then their images intersect at an angle kθ.

Proof. Suppose that the tangents to the two curves make angles θ1 and θ2

with respect to the real axis. Then θ = θ2 − θ1 is the angle between the two
curves. According to (11.5), the angle φ between their images is given by

φ = kθ2 + arg g(z0) − (kθ1 + arg g(z0)) = kθ, g(z0) =
f (k)(z0)

k!
.

Combining Theorems 11.1 and 11.6, we see that an analytic function is
conformal at a point if and only if it has a nonzero derivative at the point.
Thus, an analytic function f is conformal on a domain D iff f ′(z) �= 0 on D.

It now pays to reexamine bilinear transformations, studied in Chapter 3,
from a conformal mapping point of view. Recall that the transformation

w = f(z) =
az + b

cz + d
(ad − bc �= 0) (11.6)

represents a one-to-one continuous mapping from the extended plane onto
itself, with f(−d/c) = ∞ and f(∞) = a/c. Since f ′(z) �= 0 (ad − bc �= 0), the
mapping is conformal for all finite z, z �= −d/c.
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As we have seen, a circle or a straight line is mapped onto either a circle
or a straight line, depending on which point is mapped onto the point at ∞.
For instance, the inversion transformation w = 1/z maps straight lines not
passing through the origin onto circles. In particular, the lines y = x + 1 and
y = −x + 1 are mapped, respectively, onto the circles(

u +
1
2

)2

+
(

v +
1
2

)2

=
(

1√
2

)2

and
(

u − 1
2

)2

+
(

v +
1
2

)2

=
(

1√
2

)2

.

At first glance, Figure 11.6 is somewhat misleading. It shows a pair of straight
lines that intersect at one point being mapped onto a pair of circles that
intersect at two points. It should not be forgotten, however, that these straight
lines also intersect at ∞. For both lines, the point (0, 1) is mapped onto the
point (0,−1) while the point at ∞ is mapped onto the origin. The two lines
intersect at right angles at (0, 1) as do the two circles at (0,−1). This is in
harmony with Theorem 11.1.

Figure 11.6.

But at what angle do the two lines intersect at ∞? We need the following
definition: Two smooth curves in the extended plane are said to intersect at
an angle α at ∞ if their images under the transformation w = 1/z intersect
at an angle α at the origin. Since the two circles in Figure 11.6 intersect at
right angles at the origin, the lines y = x+1 and y = −x+1 intersect at right
angles at ∞.

With this definition, we can show that all transformations of the form
(11.6) are conformal at ∞. There are two cases to consider.

Case 1: Let c �= 0. The behavior of f at ∞ is determined from the behavior
of f(1/z) at 0 in (11.6). Thus we consider

g(z) = f

(
1
z

)
=

a/z + b

c/z + d
=

bz + a

dz + c
.

Since g′(0) = (bc− ad)/c2 �= 0, it follows that g(z) is conformal at ζ = 0. But
this means that f(z) is conformal at z = ∞.
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Case 2: Let c = 0. Then (11.6) is linear, and maps z = ∞ onto w = ∞.
So we need to consider the expression h(z) = 1/f(1/z) in (11.6):

w = h(z) =
dz

bz + a
.

Since h′(0) = d/a �= 0, h(z) is conformal at z = 0; that is, f(z) is conformal at
z = ∞. Hence, a bilinear transformation is a one-to-one conformal mapping
of the extended plane onto itself.

Recall from Chapter 4 that the exponential function ez maps lines parallel
to the y axis onto circles centered at the origin and lines parallel to the x axis
onto rays emanating from the origin. From elementary geometry we know that
these two image curves must intersect at right angles (see Figure 11.7).

Figure 11.7.

Finally, consider the function w = cos z, which maps lines parallel to the
y axis onto ellipses and lines parallel to the x axis onto hyperbolas. Accord-
ing to Theorem 11.1, these conic sections must intersect at right angles (see
Figure 11.8).

Figure 11.8.
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Questions 11.7.

1. What is meant by a tangent to a point on a straight line?
2. Was it necessary to require the curves in Theorem 11.1 to be smooth?
3. Can nonanalytic functions be conformal?
4. What kind of functions are isogonal?
5. Why does the derivative play such a central role?
6. If a function is one-to-one in some neighborhood of each point in a

domain, why does this not mean that the function is one-to-one in the
domain?

7. If f is conformal on a domain D, is f always one-to-one on D?
8. If f is conformal on a domain D which is symmetric with respect to the

real axis, is f(z) conformal on D?
9. What is the relationship between conformal and one-to-one?

10. At what angle do parallel lines intersect at ∞?
11. How might we define a function to be analytic at ∞?
12. Is the sum of conformal maps conformal? The product? The composi-

tion?

Exercises 11.8.

1. Given a complex number z0 and an ε > 0, show that there exists a
function f(z) analytic at z0 with f ′(z0) �= 0 and such that f(z) is not
one-to-one for |z − z0| < ε. Does this contradict Theorem 11.2?

2. Show that z2 is one-to-one in a domain D if and only if D is contained
in a half-plane whose boundary passes through the origin.

3. Find points at which the mapping defined by f(z) = nz + zn (n ∈ N) is
not conformal.

4. Prove that two smooth curves intersect at an angle α at ∞ if and only
if their images under stereographic projection (see Section 2.4) intersect
at an angle α at the north pole.

5. Show that f(z) and f(z) are both isogonal at points where f(z) is
analytic with nonzero derivative.

6. If two straight lines are mapped by a bilinear transformation onto circles
tangent to each other, show that the two lines must be parallel. Is the
converse true?

7. Find the radius of the largest disk centered at the origin in which w = ez

is one-to-one. Is the radius different if the disk is centered at an arbitrary
point z0?

8. For f(z) = ez, find arg f ′(z). Use this to verify that lines parallel to the
y axis and x axis map, respectively, onto circles and rays.

9. Suppose f(z) is analytic at z0 with f ′(z0) �= 0. Prove that a “small”
rectangle containing z0 and having area A is mapped onto a figure whose
area is approximately |f ′(z0)|2A.

10. Either directly or by making use of Theorem 11.5, show that the function
w = zn maps the ray arg z = θ (0 ≤ θ < 2π/n) onto the ray arg z = nθ.
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11. If f(z) is nonconstant and analytic in a domain D, show that f ′(z) = 0
for only a countable number of points in D. Thus conclude that f(z)
is locally one-to-one and conformal at all but a countable number of
points in D.

12. Show that f(z) = z + 1/z is conformal except at z = ±1. With this in
mind, review its mapping properties from Chapter 3.

11.2 Normal Families

We have previously seen significant differences between pointwise and uniform
continuity as well as between pointwise and uniform convergence. Once again
we encounter the contrast between local and global properties. This time, we
shall require a uniformity to hold over a set consisting of a family of functions.

A family F of functions is said to be uniformly bounded on a set A if there
exists a real number M such that |f(z)| ≤ M for all f ∈ F and all z ∈ A.
Certainly the uniform boundedness of a family implies that each member
of the family is bounded. On the other hand, each member of the sequence
{fn(z)} of functions fn(z) = nz is bounded in the disk |z| ≤ R, but there is
no bound that works for every member of the family.

A family F of functions is said to be locally uniformly bounded on a set A
if to each z ∈ A there corresponds a neighborhood in which F is uniformly
bounded. The sequence fn(z) = 1/(1− zn) is locally uniformly bounded, but
not uniformly bounded in the disk |z| < 1. We have the following characteri-
zation:

Theorem 11.9. A family F of functions is locally uniformly bounded in a
domain D if and only if F is uniformly bounded on each compact subset
of D.

Proof. Let F be locally uniformly bounded and suppose K is a compact subset
of D. For each point in K, choose a neighborhood in which F is uniformly
bounded. This provides an open cover for K. According to the Heine–Borel
theorem, there exists a finite subcover of K. That is, there are finitely many
zi ∈ K and εi > 0 such that K ⊂ ⋃n

i=1 N(zi; εi), where |f(z)| ≤ Mi for all
f ∈ F and all z ∈ N(zi; εi). Then F is uniformly bounded on K, having for
a bound M = max{M1, M2, . . . ,Mn}.

The converse is immediate from the fact that the closure of a neighborhood
of a point is a compact set.

By restricting ourselves to locally uniformly bounded families of analytic
functions, we can obtain additional information.

Theorem 11.10. Suppose F is a family of locally uniformly bounded ana-
lytic functions in a domain D. Then the family F (n), consisting of the nth
derivatives of all functions in F , is also locally uniformly bounded in D.
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Proof. It suffices to prove this when n = 1, since then the result may be reap-
plied successively to each new class. Suppose for some z0 in D that |f(z)| ≤ M
for each f ∈ F and all z inside or on the circle C : |z − z0| = r contained in
D. Then for z in the smaller disk |z − z0| ≤ r/2, Cauchy’s integral formula
yields

f ′(z) =
1

2πi

∫
C

f(ζ)
(ζ − z)2

dζ

and so, as |ζ − z| ≥ |ζ − z0| − |z − z0| ≥ r − r/2 = r/2,

|f ′(z)| ≤ 1
2π(r/2)2

∫
C

|f(ζ)| |dζ| ≤ 4M

r
.

This shows that the family F ′ is locally uniformly bounded at z0. Since z0

was arbitrary, the proof is complete.

We next extend the concept of uniform continuity. A family F of functions
is said to be equicontinuous in a region R if for every ε > 0 there exists a
δ > 0 such that |f(z1) − f(z0)| < ε for all f ∈ F and all points z0, z1 ∈ R
satisfying |z1−z0| < δ. Observe that each member of an equicontinuous family
is uniformly continuous. That is, for an equicontinuous family we can find a
δ = δ(ε) that works for all points in the set as well as for all functions in the
family.

It is possible for each member of a family to be uniformly continuous
without the family being equicontinuous. To see this, set fn(z) = nz. Each fn

is uniformly continuous on |z| ≤ R because

|fn(z1) − fn(z0)| = n|z1 − z0| < ε

whenever |z1 − z0| < ε/n = δ. But a δ cannot be chosen that works for all n.
Hence the sequence {nz} is not equicontinuous on |z| ≤ R.

There is an important relationship between locally uniformly bounded and
equicontinuous families of analytic functions.

Theorem 11.11. If F is a locally uniformly bounded family of analytic func-
tions in a domain D, then F is equicontinuous on compact subsets of D.

Proof. We prove the theorem in the special case that K is a closed disk con-
tained in D. The proof for general compact subsets of D is similar to the
proof of Theorem 11.9, and is left for the reader. By Theorem 11.10, the fam-
ily F ′, consisting of the derivatives of functions in F , is also locally uniformly
bounded. In view of Theorem 11.9. we may therefore assume that |f ′(z)| ≤ M
for all f ∈ F and all z ∈ K. Then for z0, z1 ∈ K, we have

|f(z1) − f(z0)| =
∣∣∣∣
∫ z1

z0

f ′(z) dz

∣∣∣∣ ≤ M |z1 − z0|,

where the path from z0 to z1 is taken to be the straight line segment. By
choosing δ = ε/M (ε arbitrary), we see that the family F is equicontinuous
on the disk K.
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Remark 11.12. The converse of Theorem 11.11 is not true. The sequence
fn(z) = z + n is equicontinuous on all compact subsets of the plane. In fact
fn(z1) − fn(z0) = z1 − z0 for each n, so that δ = ε may be chosen. However,
{fn(z)} is not uniformly bounded in any neighborhood in C. •

In Chapter 2, we showed that every bounded sequence of complex num-
bers contains a convergent subsequence. Our goal in this section is to obtain
analogous results for sequences of functions. It is not clear, at this point, what
form of convergence is most reasonable or most applicable. To help clarify the
situation, we need the following definition. A family F of functions is said to
be normal in a domain D if every sequence {fn} in F contains a subsequence
{fnk

} that converges uniformly on each compact subset of D.
As an example, the family consisting of the sequence {zn} is normal in

the domain |z| < 1. In fact, the sequence itself converges uniformly to zero
on every compact subset of |z| < 1. Note, however, that neither the sequence
nor any subsequence converges uniformly in the whole domain.

Just as a bounded sequence may contain different subsequences that con-
verge to different limits, so may a normal family contain different sequences
that converge uniformly on compact subsets to different functions. To illus-
trate, set

fn(z) =
{

zn if n odd,
1 − zn if n even.

Then {f2n+1} converges uniformly to 0 and {f2n} converges uniformly to 1
on all compact subsets of |z| < 1.

A set of points E is said to be dense in a set A if every neighborhood of each
point in A contains points of E. Every domain in the plane contains a dense
sequence of points (for example, the set of points in the domain having both
coordinates rational is countable, and so may be expressed as a sequence).
Before proving the major result of this section, we need the following:

Lemma 11.13. Suppose {fn(z)} is a sequence of analytic functions that is
locally uniformly bounded in a domain D. If {fn(z)} converges at all points
of a dense subset of D, then it converges uniformly on each compact subset
of D.

Proof. Given a compact set K contained in D, we wish to show that the
sequence {fn(z)} converges uniformly on K. By Theorem 11.11, {fn(z)} is
equicontinuous on K. Thus to each ε > 0, there corresponds a δ > 0 such that

|fn(z) − fn(z′)| < ε/3 for |z − z′| < δ, (11.7)

where z, z′ are any points in K and n is arbitrary. Since K is compact, finitely
many, say p, neighborhoods of radius δ/2 cover K. In each of these p neigh-
borhoods, choose a point zk (k = 1, 2, . . . , p) from the dense subset of K, at
which {fn} converges. Next choose n and m large enough so that
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|fn(zk) − fm(zk)| < ε/3 for k = 1, 2, . . . , p. (11.8)

In view of (11.7) and (11.8), we see that, to each z in K, there corresponds a
zk in K such that

|fn(z) − fm(z)| ≤ |fn(z) − fn(zk)| + |fn(zk) − fm(zk)| + |fm(zk) − fm(z)|
< ε.

Hence the sequence {fn(z)} is uniformly Cauchy on K, and must therefore
converge uniformly on K.

Note the lemma concludes that {fn(z)} is a normal family in D. We will
now show, by a diagonalization process, that this conclusion is true without
the assumption that the sequence converges on a dense subset.

Theorem 11.14. (Montel’s Theorem) If F is a locally uniformly bounded
family of analytic functions in a domain D, then F is a normal family in D.

Proof. Given a sequence {fn} of functions in F , we must show that some
subsequence of {fn} converges uniformly on compact subsets. Choose any
sequence of points {zk} that is dense in D. According to Lemma 11.13, it
suffices to construct a subsequence of {fn} that converges at each point of
the sequence {zk}. By hypothesis, the sequence {fn(z1)} of complex numbers
is bounded. Hence by the Bolzano–Weierstrass property (see Theorem 2.17),
there exists a subsequence of {fn}, which we shall denote by {fn,1}, that
converges at z1. But the sequence of {fn,1(z2)} of points is also bounded. Thus
there is a subsequence {fn,2} of {fn,1} that converges at z2. Since {fn,2} is a
subsequence of {fn,1}, it must also converge at z1.

Continuing the process, for each positive integer m, we obtain the mth
subsequence {fn,m} of {fn} so that it converges at z1, z2, . . . , zm. As seen in
the chart below,

f1,1(z), f2,1(z), f3,1(z), . . . fm,1(z), . . .

f1,2(z), f2,2(z), f3,2(z), . . . fm,2(z), . . .

f1,3(z), f2,3(z), f3,3(z), . . . fm,3(z), . . .

...
...

...
...

...

f1,m(z), f2,m(z), f3,m(z), . . . fm,m(z), . . .

...
...

...
...

...

the mth sequence of complex functions converges at zm and all preceding
points of the sequence {zk}. Now consider the sequence {fn,n(z)}, which makes
up the diagonal of the chart. For each fixed m, the sequence {fn,n(zm)},
n ≥ m, is a subsequence of the convergent sequence {fn,m(zm)}, and hence
converges. Therefore, {fn,n(z)} is a subsequence of {fn} that converges at all
points of the sequence {zk}. This completes the proof.
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The Bolzano–Weierstrass theorem guarantees the existence of a limit point
for every bounded infinite set of points, and consequently the existence of a
convergent subsequence for every bounded sequence. Montel’s theorem can be
viewed as an “analytic function” analog to Bolzano’s theorem. It guarantees,
in some sense, the existence of a convergent sequence of functions associated
with every locally uniformly bounded family of analytic functions.

Carrying the analogy one step further, both theorems suffer from the same
deficiency. The limit point of Bolzano’s theorem need not be a member of the
set, while the convergent function of Montel’s need not be a member of the
normal family. For example, the sequence {zn} is a normal family in |z| < 1
because it converges uniformly to 0 on all compact subsets of |z| < 1. However,
0 is not a member of the family {zn}.

Recall that a bounded set that contains all its limit points is compact. This
leads to the following definition. A normal family F of functions is said to be
compact if the uniform limits of all sequences converging in F are themselves
members of F .

Example 11.15. The family F of functions of the form

f(z) = 1 +
∞∑

n=1

anzn

that are analytic with positive real part in the disk |z| < 1 is a compact,
normal family. By Theorem 10.42, all functions f ∈ F satisfy the inequality

|f(z)| ≤ 1 + |z|
1 − |z| (|z| = r < 1).

Hence F is locally uniformly bounded and, by Montel’s theorem, is normal.
To show compactness, suppose a sequence {fn} of functions in F converges
uniformly to a function g. We wish to show that g ∈ F . By Theorem 8.16, g is
analytic in |z| < 1. Since fn(0) = 1 for every n, g(0) = 1. Since Re fn(z) > 0
for every n, Re g(z) ≥ 0 for |z| < 1. But then by the open mapping theorem,
we must have Re g(z) > 0 for |z| < 1. Thus g ∈ F , and F is compact. •
Questions 11.16.

1. What kinds of families of functions are locally uniformly bounded but
not uniformly bounded?

2. Is the family of polynomials locally uniformly bounded on some set?
3. If F is a uniformly bounded family of analytic functions, is F (n) also

uniformly bounded?
4. If a family of functions is uniformly bounded at each point in a domain,

is the family locally uniformly bounded?
5. Where, in the proof of Theorem 11.7, did we use the fact that the set

K was a disk?
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6. What is an important distinction between a dense sequence and a dense
set?

7. What kinds of normal families have more than one subsequential limit
function?

8. Can a normal family have infinitely many subsequential limit functions?

Exercises 11.17.

1. Suppose that for each point in a domain D there corresponds a neigh-
borhood in which a family F is equicontinuous. Show that F is equicon-
tinuous on compact subsets of D. Is F equicontinuous in D?

2. Show that the sequence {nz} is not equicontinuous in any region.
3. If F is locally uniformly bounded family of analytic functions in a do-

main D, show that F ′, the family of functions consisting of the deriva-
tives of functions in F , is equicontinuous on compact subsets of D.

4. Suppose F is a normal family of analytic functions in the disk |z| < 1.
Let G be the family of functions of the form g(z) =

∫ z

0
f(ζ) dζ, where

f ∈ F . Show that G is normal in |z| < 1.
5. Show that the sequence {fn(z)} defined by

fn(z) =
{

zn if n odd
1 − zn if n even,

forms a normal family in the disk |z| < 1.
6. Show that the family of functions of the form f(z) =

∑∞
n=0 anzn, where

|an| ≤ n, is a compact normal family of analytic functions in the disk
|z| < 1.

7. Let F be the family consisting of all functions f(z) that are analytic in
a domain D with |f(z)| ≤ M in D. Show that F is a compact, normal
family in D.

11.3 Riemann Mapping Theorem

We have already discussed a number of examples of analytic functions between
various domains of the complex plane. In some cases, we have given complete
characterizations for mappings between certain domains such as disks and
half-planes. Also, we know from the open mapping theorem that nonconstant
analytic functions map domains into domains. Now, suppose D1 and D2 are
simply connected domains. Then there is almost always an analytic function
mapping D1 onto D2. We first discuss a “typical” exception. Suppose D1 is
the whole plane and D2 is the disk |z| < 1. There can be no function analytic
in the plane (entire) that maps onto the (bounded) disk |z| < 1, for, according
to Liouville’s theorem, constant functions are the only entire functions whose
images are contained in the disk. Our major theorem of this section says
that a one-to-one analytic mapping exists between any two simply connected
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domains, neither of which is the whole plane. Before proving this remarkable
(existence) result, we shall need some preliminaries concerning univalent (a
fancy term for one-to-one) functions.

Theorem 11.18. Suppose {fn(z)} is a sequence of analytic, univalent func-
tions defined in a domain D and converging uniformly on each compact sub-
set of D to a nonconstant function f(z). Then f(z) is analytic and univalent
in D.

Proof. The analyticity of f follows from Theorem 8.16. To prove the univa-
lence of f , assume there are distinct points z0, z1 in D for which f(z0) =
f(z1) = a. We can find r > 0 (e.g., r < |z0 − z1|/2) so small that the closed
disks centered at z0 and z1 with radius r are mutually disjoint and are con-
tained in D. Assume further that f(z) �= a on the circles C0 : |z− z0| = r and
C1 : |z − z1| = r. This is possible because f is nonconstant. Let

m = min
z∈C0∪C1

|f(z) − a|.

Now choose n sufficiently large so that |fn(z)− f(z)| < m on C0 ∪C1. So, on
C0 ∪ C1,

|f(z) − a)| > m > |fn(z) − f(z)| for large n.

By Rouche’s theorem, the function

fn(z) − a = (fn(z) − f(z)) + (f(z) − a)

has at least one zero inside C0 and at least one zero inside C1. This contradicts
the univalence of fn(z) in D.

Note that it is possible for the uniform limit of a sequence of univalent
functions to be constant. For example, the univalent sequence fn(z) = z/n
converges uniformly to f(z) = 0 on any compact subset of C. Thus the uniform
limit of a sequence of univalent functions need not be univalent.

Theorem 11.19. Suppose f(z) is analytic and univalent in a domain D, and
that g(z) is analytic and univalent on the image of D under f(z). Then the
composition function g(f(z)) is analytic and univalent in D.

Proof. The analyticity of g(f(z)) follows from Theorem 5.6. To show univa-
lence, suppose

g(f(z0)) = g(f(z1)) for z0, z1 ∈ D.

By the univalence of g, we have f(z0) = f(z1). From the univalence of f ,
z0 = z1 and the theorem is proved.

Theorem 11.20. Suppose f , mapping a domain D1 onto D2, is analytic and
univalent in D1. Then the inverse function g, defined by g(f(z)) = z for all
z ∈ D1, is an analytic and univalent mapping from D2 onto D1.
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Proof. The univalence of g is an immediate consequence of the univalence of
f . To show analyticity, fix a point w0 ∈ D2. Then w0 = f(z0) for a unique
z0 ∈ D1. Setting w = f(z), we have

g(w) − g(w0)
w − w0

=
z − z0

f(z) − f(z0)
. (11.9)

Since f maps open sets onto open sets (Theorem 9.55), g is continuous in
D2. Thus z → z0 as w → w0. By Theorem 11.3, f ′(z0) �= 0. Hence we may
take limits in (11.9) to obtain g′(w0) = g′(f(z0)) = 1/(f ′(z0)). Therefore g is
analytic in D2, and the theorem is proved.

If f and g are analytic and univalent in domains D1 and D2, respectively,
and map onto the disk |z| < 1, then g−1(f(z)) is an analytic and univalent
mapping from D1 onto D2 (see Figure 11.9).

Figure 11.9.

Thus the set of domains that may be mapped analytically and univalently
onto the interior of the unit disk can also be mapped analytically and univa-
lently onto one another.

Suppose f is analytic and univalent in D and maps onto |z| < 1. Are there
other functions with the same property? In general, there are infinitely many.
To see this, recall from Section 3.2 (see Theorem 3.21) that all functions of
the form

g(z) = eiα z − z0

1 − z0z
(|z0| < 1, α real) (11.10)

map the interior of the unit circle onto itself. Hence the functions g(f(z)) and
f(z) simultaneously map D onto |z| < 1. Our next result suggests conditions
for establishing a unique mapping function.

Given a domain D ⊆ C, we define the group of analytic automorphisms of
D as follows: If f : D → D is an analytic function that is one-to-one and onto,
then f(z) is called an analytic/holomorphic automorphism of D. That is, f(z)
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is called a conformal self-mapping of D. The set of all analytic automorphisms
of D form what is called an “automorphism group” (with composition as the
group operation) of D, and is denoted by Aut (D). The Schwarz lemma can
be used to describe the automorphism groups of the upper half-plane, and the
unit disk Δ (see also Theorems 3.18 and 3.21). It is easy to see that

Aut a(D) = {f ∈ Aut (D) : f(a) = a}

forms a subgroup of the group Aut (D). Our next result is a reformulation of
Theorem 3.21 in the language of automorphisms, but the new proof uses the
Schwarz lemma.

Theorem 11.21. We have

Aut (Δ) =
{

eiα

(
z − a

1 − az

)
: |a| < 1, 0 ≤ α ≤ 2π

}
.

In particular, Aut 0(Δ) := {f ∈ Aut (Δ) : f(0) = 0} = {eiαz : α real}.

Proof. Let a ∈ Δ, and

ϕa(z) =
a − z

1 − az
.

Obviously, ϕa is analytic for |z| < 1/|a| (|a| < 1), ϕa(Δ) ⊆ Δ, and ϕa(∂Δ) =
∂Δ. Moreover, ϕa is univalent on Δ and (ϕa)−1 = ϕa. Thus, ϕa ∈ Aut (Δ).
Also, the rotation eiθϕa(z) (θ ∈ R) belongs to Aut (Δ).

Conversely, let f ∈ Aut (Δ). Then there exists a b ∈ Δ such that f(0) = b.
Then F (z) defined by F = ϕb ◦ f is also analytic and univalent in Δ, F maps
Δ onto Δ, and F (0) = 0. By the Schwarz lemma,

|F (z)| ≤ |z| for z ∈ Δ.

Since F is analytic and one-to-one on Δ, F−1 exists on Δ. Moreover, F−1

is analytic and one-to-one on Δ with F−1(0) = 0. We may again apply the
Schwarz lemma to F−1 and obtain |F−1(w)| ≤ |w| for w ∈ Δ. If we take
w = F (z), we get

|z| ≤ |F (z)| for z ∈ Δ.

Hence, |F (z)| = |z|, and so F (z) = λz with |λ| = 1, or

ϕb(f(z)) = λz or f(z) = ϕb(λz).

The desired result follows.

Our next result suggests conditions for establishing a unique mapping
function.

Lemma 11.22. Suppose f(z) is analytic and univalent in |z| < 1 and maps
the disk onto itself. If f(0) = 0 and f ′(0) > 0, then f(z) = z.
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Proof. As Aut 0(Δ) := {f ∈ Aut (Δ) : f(0) = 0} = {eiαz : α real} and
f ′(0) > 0, the result follows.

Two domains D1 and D2 are said to be conformally equivalent if there
is a bijective analytic function mapping D1 onto D2. Both the existence and
method of finding it are two important components for conformal mappings.
We start with a couple of examples illustrating conformal mappings between
standard simply connected domains. It follows that conformally equivalent
domains are homeomorphic but not the converse.

Example 11.23. We are interested in showing that the upper half disk D =
{z : |z| < 1, Im z > 0} and the unit disk Δ = {z : |z| < 1} are conformally
equivalent.

Step 1: We consider

w1 = f1(z) =
1

1 − z
.

Then we know that f1 transforms the unit disk Δ onto the right half-plane
Re w1 > 1/2. Rewriting

w1 = f1(z) =
1 − z

|1 − z|2 =
1 − x + iy

|1 − z|2 ,

we see that Im w1 > 0 iff Im z > 0. Moreover, z = 1 is a pole of f1(z), the
segment [−1, 1] maps onto the half-line [1/2,∞) and the upper half circle
{z : |z| = 1, Im z > 0} onto the half-line {w1 : Rew1 = 1/2, Im w1 > 0}.
Therefore, f1 maps D onto D1 = {w1 : Rew1 > 1/2, Im w1 > 0}.

Step 2: The map w2 = f2(w1) = w1 − 1/2 maps the domain D1 onto the
first quadrant D2 = {w2 : Rew2 > 0, Im w2 > 0}.

Step 3: The map w3 = f3(w2) = w2
2 maps D2 onto the upper half-plane

H+ = {w3 : Imw3 > 0}.

Step 4: The map w = f4(w3) = w3−i
w3+i carries the upper half-plane H+ onto

the unit disk {w : |w| < 1}. Finally a map f with the desired property is a
composition

w = f(z) = (f4 ◦ f3 ◦ f2 ◦ f1)(z) = f4(f3(f2(f1(z))))

which gives

w = f(z) =
(1 + z)2 − 4i(1 − z)2

(1 + z)2 + 4i(1 − z)2
. •

Example 11.24. Let D = {z : |z| < 1, |z − 1/2| > 1/2}. Now we want to
find a conformal map of D onto the unit disk Δ. As we can see from the
picture, it suffices to focus on certain key points to understand the sequence
of mappings considered here. If w1 = 1/(1 − z), then z = 1 − 1/w1 and
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Figure 11.10. A conformal map of D onto the strip

{
|z| < 1 ⇐⇒ Re w1 > 1/2
|z − 1/2| > 1/2 ⇐⇒ Re w1 < 1.

Because of the basic property of Möbius transformations, it follows easily that
f1 maps D onto the strip D1 = {w1 : 1/2 < Re w1 < 1}. A similar explanation
may be provided for other mappings. Finally, the composition

w = f(z) = f4 ◦ f3 ◦ f2 ◦ f1(z)

gives the formula which does the required job, where

w2 = f2(w1) = iπ(w1 − 1/2), w3 = f3(w2) = ew2 , f4(w3) =
w3 − i

w3 + i
. •

We are now ready to formally state and prove the Riemann mapping the-
orem which is a classical example of existence theorems.

Theorem 11.25. (Riemann Mapping Theorem) Suppose D is a simply
connected domain, other than the whole plane, and z0 is a point in D. Then
there exists a unique function f(z), analytic and univalent in D, which maps
D onto the disk |w| < 1 in such a manner that f(z0) = 0 and f ′(z0) > 0.

Proof. We first prove the uniqueness of the mapping function f . If g1 and g2

are two functions each of which maps D onto the unit disk |w| < 1 in the
prescribed manner, then h = g2 ◦ g−1

1 is an analytic and univalent mapping
of the unit disk |w| < 1 onto itself. Furthermore,

h(0) = g2(g−1
1 (0)) = g2(z0) = 0

and, because g′1(z0) > 0 and g′2(z0) > 0,

h′(0) = g′2(g
−1
1 (0))(g−1

1 )′(0) =
g′2(z0)
g′1(z0)

> 0.

Hence, by Lemma 11.22, h is the identity function. That is, g1(z) = g2(z) and
uniqueness is proved.
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To prove existence of the mapping function, we first show that there is an
analytic and univalent function mapping D into the disk |w| < 1. Since D is
not the whole plane C, there is a point a ∈ C \D. If there is actually a disk
|z − a| < ε outside of D, then |z − a| > ε for all points z in D. In this case,

w =
ε

z − a

is an analytic and univalent function that maps all points of D into the unit
disk |w| < 1. Thus, the proof follows if D is a bounded domain. However, if D
is unbounded, then it is possible that the complement of D does not contain
any disk. For instance, D might be the plane minus a ray from some point z0

to ∞. This kind of difficulty will be avoided by considering a branch of the
square root function, which maps a domain onto one “half” its size.

According to Corollary 7.52, if a ∈ C \D, then there exists an analytic
function φ : D → C, called analytic branch of (z−a)1/2 with φ2(z) = z−a so
that φ(z) =

√
z − a. Furthermore, φ(z) is univalent in D. For if φ(z1) = φ(z2)

for z1, z2 ∈ D, then

[φ(z1)]2 = [φ(z2)]2, i.e., z1 − a = z2 − a.

Now let D′ = φ(D). Then D′ is simply connected since D is simply con-
nected. Then the complement of D′ contains a disk. To see this, we will show
that points b and −b cannot simultaneously be in D′. For if they are, then
there exist two points z1 and z2 in D such that φ(z1) = b and φ(z2) = −b.
Now,

φ(z1) = −φ(z2) =⇒ [φ(z1)]2 = [φ(z2)]2

=⇒ z1 − a = z2 − a, i.e., z1 = z2

=⇒ b = −b, i.e., φ(z1) = 0 = φ(z2)
=⇒ z2 = a ∈ C \D,

contradicting the fact that z1 and z2 are distinct.
Next choose a point w0 ∈ D′ and an ε > 0 so that the disk |w−w0| < ε is

contained in D′. Then the disk |w + w0| < ε is contained in the complement
C \D′. Hence the function

ψ(w) =
ε

w + w0

maps D′ into the unit disk, because |w + w0| > ε for all w ∈ D′. Therefore,
the composition

f(z) = ψ(φ(z)) =
ε

φ(z) + w0

is analytic and univalent in D and maps D into the unit disk. By a suitable
bilinear transformation (fill in details!), we can transform this function into a
function f0(z) satisfying the additional conditions f0(z0) = 0 and f ′

0(z0) > 0.
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Let F denote the family of all analytic functions g : D → C such that g(z)
is univalent in D, g(z0) = 0, g′(z0) > 0, and satisfies |g(z)| < 1 for all z in D.
The family F is nonempty because f0(z) ∈ F . Certainly the function whose
existence we are determined to prove must also be in the family F . It will be
shown that the desired function has a larger derivative at z0 than any other
function in F . To show the existence of a function in F with a maximum
derivative at z0, we will rely on the theory of normal families.

Since the family F is locally uniformly bounded (in fact, uniformly
bounded) in D, it follows from Theorem 11.14 that F is a normal family.
Set

A = lub {g′(z0) : g ∈ F}.
Then, A > 0 because g′(z0) > 0 for each g ∈ F . But A may be infinite.
By the definition of A, there is a sequence {fn} of functions in F such that
f ′

n(z0) → A. By the normality of F , there exists a subsequence {fnk
} that

converges uniformly on the compact subsets of D to an analytic function
f(z). An application of Corollary 8.18 shows that f ′(z0) = A, so that A is
finite. Since f ′(z0) ≥ f ′

0(z0) > 0, the function f(z) is not constant in D. It
thus follows from Theorem 11.18 that f(z) is univalent and, consequently, a
member of F .

We shall now show that this f maps D onto the unit disk, and so it is
the required function. For the sake of obtaining a contradiction we suppose
that f(D) is not the whole unit disk |w| < 1. Then f(z) �= α for some α with
|α| < 1. By the definition of analytic branch of square roots, there exists an
analytic function F (z) in D so that

F (z)2 =
f(z) − α

1 − αf(z)
.

The univalence of F (z) follows from the univalence of f(z), and the inequal-
ity |F (z)| < 1 follows from the inequality |f(z)| < 1. However, F (z) is not
properly normalized. We therefore consider the function

G(z) =
|F ′(z0)|
F ′(z0)

F (z) − F (z0)
1 − F (z0)F (z)

,

which satisfies G(z0) = 0 and G′(z0) > 0, so that G(z) ∈ F . Moreover,

G′(z0) =
|F ′(z0)|

1 − |F (z0)|2
=

1 + |α|
2
√
|α|

A > A = f ′(z0),

contradicting the maximality of f ′(z0). Thus f(z) omits no values inside the
unit disk, and the proof is complete.

Remark 11.26. Since univalence in a domain guarantees a nonvanishing
derivative, the Riemann mapping theorem shows that any two simply con-
nected domains (neither of which is the plane) are conformally equivalent.
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In the proof of Theorem 11.25, we assumed that an analytic, univalent
function maps simply connected domains onto simply connected domains. In
elementary topology, it is proved that the one-to-one continuous image of a
simply connected domain cannot be multiply connected. Thus, we conclude
that no simply connected domain can be conformally equivalent to a multiply
connected domain. •
Remark 11.27. Recall that a bilinear transformation maps circles and
straight lines onto circles and straight lines. Hence any conformal mapping
of a domain, other than a disk or a half-plane, onto the interior of the unit
circle must be accomplished by a function other than a bilinear transfor-
mation. Furthermore, by the uniqueness property of the Riemann mapping
theorem, no univalent function other than a bilinear transformation can map
a disk or a half-plane onto the interior of the unit circle.

At this point, we must reflect on a sobering thought. The Riemann map-
ping theorem, like many existence theorems, has the drawback of not furnish-
ing much insight into the actual construction. Therefore, given two “unfa-
miliar” simply connected domains, we must plod along as before to develop
techniques for determining an appropriate mapping function. •
Remark 11.28. The mapping of the interior of an arbitrary polygon onto
the interior of the unit circle, whose existence is guaranteed by the theorem,
can be found explicitly. This is accomplished in several stages. The Schwarz–
Christoffel formula gives an analytic and univalent mapping of the upper
half-plane onto the interior of an arbitrary polygon. For a complete discussion
of the Schwarz–Christoffel transformation, we refer the reader to Nehari [N].
Composing the inverse of such a mapping with a bilinear transformation from
the upper half-plane onto the open unit disk (see Section 3.3) gives the desired
mapping. •
Example 11.29. Let f : Ω → Ω be analytic in a simply connected domain Ω
(�= C) having a fixed point in Ω. Then it can easily be shown that |f ′(a)| ≤ 1,
and if |f ′(a)| = 1, then f is actually a homeomorphism from Ω onto Ω.

The Riemann mapping theorem assures the existence of a bijective con-
formal map φ : Ω → Δ such that φ(a) = 0. Then we see that g defined
by

g(z) = φ ◦ f ◦ φ−1(z)

maps Δ into Δ and satisfies the hypothesis of the Schwarz lemma. Now, we
easily see that g′(0) = f ′(a) and so |f ′(a)| ≤ 1, because |g′(0)| ≤ 1. Moreover,

|f ′(a)| = 1 =⇒ |g′(0)| = 1
=⇒ g(z) = eiαz (by the Schwarz lemma)
=⇒ φ ◦ f ◦ φ−1(z) = eiαz

=⇒ f(z) = φ−1(eiαφ(z))
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which implies that f must be a bijective mapping from Ω onto Ω, because
φ : Ω → Δ and φ−1 : Δ → Ω are bijective maps. •
Questions 11.30.

1. Must the convergence be uniform in Theorem 11.18 in order for the
conclusion to be valid?

2. Are there conformal mappings from multiply connected domains onto
multiply connected domains?

3. If f(z) is analytic and conformal in a domain D1 and maps D1 onto D2,
are D1 and D2 conformally equivalent?

4. What other initial conditions could we have prescribed in the Riemann
mapping theorem to guarantee uniqueness?

5. Does there exist a one-to-one conformal mapping from the unit disk
onto the disk minus the origin?

6. If two domains are conformally equivalent, what can be said about their
boundaries?

7. Does there always exist an analytic function which maps a simply con-
nected domain Ω( �= C) into the unit disk |z| < 1?

8. Let Ω ( �= C) be a simply connected domain and let F be the set of all
one-to-one analytic functions which map Ω into the unit disk |z| < 1,
and a ∈ Ω. If f ∈ F and is not onto, is there a function g ∈ F such that
|g′(a)| > |f ′(a)|?

9. Are the plane C and the unit disk |z| < 1 conformally equivalent? Are
they homeomorphic?

10. Are the plane C and the upper half-plane Imw > 0 conformally equiv-
alent? Are they homeomorphic?

11. In the statement of the Riemann mapping theorem, why do we require
the domain D to be a proper subset of C? Does the theorem still hold
if we remove that assumption?

12. Does the proof of the Riemann mapping theorem use the fact that every
nonvanishing analytic function in a simply connected domain D admits
analytic square root function in D?

13. Where, in the proof of the Riemann mapping theorem, did we require
the domain to be simply connected?

14. Why was it necessary to first show that some function mapped the
domain into the unit disk?

15. Why does the function G(z), constructed in the proof of the Riemann
mapping theorem, work?

16. What is a conformal map between the upper half-plane H+ =
{z : Im z > 0} and C \ [0,∞)?

17. What is a conformal map between the right half-plane D1 =
{z : Re z > 0} and D2 = {z : |Arg z| < π/8}?

18. What is a conformal map between the strip D1 = {z : 0 < Im z < π/2}
and the upper half-plane H+?
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19. What is a conformal map between the strip D1 = {z : 0 < Im z < α}
and the upper half-plane H+?

20. What is a conformal map between the infinite strip |Re z| < π/2 and
the unit disk |w| < 1?

21. What is a conformal map between the unit disk |z| < 1 and C \ Δ?

Exercises 11.31.

1. Suppose f(z) is analytic at z0 with f ′(z0) �= 0. Show that there exist
neighborhoods U and V of z0 and f(z0), respectively, such that f(z) is
a univalent mapping from U onto V .

2. Show that the plane is not conformally equivalent to the upper half-
plane. More generally, show that the plane is only conformally equivalent
to itself.

3. Let D1 = {z : 0 < Re z, Im z < ∞} and D2 = {w : Imw > 0} be
the open first quadrant and the upper half-plane, respectively. By the
Riemann mapping theorem D1 and D2 are conformally equivalent. Show
that f(z) = z2 does this job.

4. Let D1 = {z : |Re z| < π/2} and D2 = {w : Rew > 0}. Show that
f : D1 → D2 given by f(z) = eiz is conformal.

5. Even though the interior of a square can be mapped conformally onto
the interior of a circle, show that no square can be mapped conformally
onto a circle.

6. Let D1 be the annulus 0 < r1 < |z| < R1 and D2 be the annulus
0 < r2 < |z| < R2. If

R1

r1
=

R2

r2
,

construct an analytic and univalent function that maps D1 onto D2.
7. Suppose D1 and D2 are conformally equivalent, and that D2 and D3 are

conformally equivalent. Show that D1 and D3 are conformally equiva-
lent.

11.4 The Class S
We continue our investigation of univalent functions—a specialized topics in
complex analysis. Analytically, a univalent function has a nonvanishing deriva-
tive (Theorem 11.3); geometrically, a univalent function maps simple curves
onto simple curves.

Functions that are both analytic and univalent have a nice property of
mapping simply connected domains onto simply connected domains. By the
Riemann mapping theorem, we can associate a univalent function defined in
an arbitrary simply connected domain (other than the whole plane) with one
defined in the unit disk. Therefore, we shall restrict the domain on which these
functions are defined to the disk |z| < 1. Our results will have a nicer form
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if we also assume that the function has a zero (hence its only zero) at the
origin and that its derivative is equal to one at the origin. Since the derivative
of a univalent function never vanishes, every univalent function h(z) may be
reduced to a function of this form by replacing it with

f(z) =
h(z) − h(0)

h′(0)
.

We shall denote by S the class of all functions f(z) that are analytic and
univalent in the unit disk |z| < 1, and are normalized by the conditions
f(0) = 0 and f ′(0) = 1. Thus a function f(z) in S has the power series
representation

f(z) = z + a2z
2 + a3z

3 + · · · (|z| < 1).

We shall denote by T the class of all functions of the form

g(z) = z + b0 +
b1

z
+

b2

z2
+ · · ·

that are analytic and univalent in the domain |z| > 1. The following relation-
ship will enable us to deduce information about S from information about
T .

Theorem 11.32. If f(z) ∈ S, then 1/f(1/z) ∈ T .

Proof. First suppose 1/f(1/z1) = 1/f(1/z2) (|z1| > 1, |z2| > 1). Then
f(1/z1) = f(1/z2), where |1/z1| < 1 and |1/z2| < 1. The univalence of
1/f(1/z) (|z| > 1) now follows from the univalence of f(z) (|z| < 1). The
analyticity of 1/f(1/z) will be a consequence of the analyticity of f(z) if we
can show that f(1/z) �= 0 for |z| > 1. If f(1/z0) = 0 for 0 < |1/z0| < 1, then
f(0) = f(1/z0) = 0, contradicting the univalence of f(z) for |z| < 1. Hence
1/f(1/z) ∈ T , and the proof is complete.

The next theorem, because of its proof rather than its statement, is known
as the area theorem.

Theorem 11.33. If g(z) = z + b0 + (b1/z) + (b2/z2) + · · · is in T , then∑∞
n=1 n|bn|2 ≤ 1.

Proof. The univalent function g(z) maps the circle |z| = r > 1 onto a simple
closed contour C. Set g(z) = u(z) + iv(z). The area of the region R enclosed
by C, denoted by A(r), is

A(r) =
∫ ∫

R

du dv.

Note that A(r) > 0 for each r > 1. If we now let P (u, v) = −v/2 and
Q(u, v) = u/2, an application of Green’s theorem yields
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A(r) =
1
2

∫
C

u dv − v du =
1
2

∫ 2π

0

(
u

∂v

∂θ
− v

∂u

∂θ

)
dθ, (11.11)

where A(r) > 0. By Exercise 5.2(13), we have g′(z) = (1/iz)(∂g/∂θ). To
evaluate the line integral of (11.11), consider the integral

1
2

∫
|z|=r

g(z)g′(z) dz =
1
2

∫ 2π

0

(u − iv)
[

1
iz

(
∂u

∂θ
+ i

∂v

∂θ

)]
iz dθ (11.12)

=
1
2

∫ 2π

0

(
u

∂u

∂θ
+ v

∂v

∂θ

)
dθ +

i

2

∫ 2π

0

(
u

∂v

∂θ
− v

∂u

∂θ

)
dθ,

whose imaginary part corresponds to A(r). In order to simplify (11.12), we
write∫

|z|=r

g(z)g′(z) dz =
∫
|z|=r

(
z +

∞∑
m=0

bm(z)−m

)(
1 −

∞∑
n=1

nbnz−n−1

)
dz,

and note that ∫
|z|=r

(z)−mz−n−1 dz =
{

2πir−2m if n = m,
0 if n �= m.

This leads to the identity

1
2

∫
|z|=r

g(z)g′(z) dz =
1
2

∫
|z|=r

z dz − 1
2

∫
|z|=r

∑∞
n=1 n|bn|2r−2n

z
dz

= πi

(
r2 −

∞∑
n=1

n|bn|2
r2n

)
.

Therefore (11.12) is purely imaginary, and

A(r) =
1
2

∫ 2π

0

(
u

∂v

∂θ
− v

∂u

∂θ

)
dθ = π

(
r2 −

∞∑
n=1

n|bn|2
r2n

)
. (11.13)

Since A(r) > 0, we have

r2 −
∞∑

n=1

n|bn|2
r2n

> 0 (r > 1). (11.14)

But (11.14) is valid for every r > 1 so that the result follows upon letting
r → 1+.

Remark 11.34. According to (11.13), the area enclosed by the image of the
circle |z| = r is at most πr2 (the area enclosed by the circle), with equality
only for g(z) = z + b0. Furthermore, equality in the conclusion of the theorem
holds if and only if the area enclosed by the image of |z| = r > 1 becomes
arbitrarily small as r → 1. •
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Remark 11.35. If b1 = 1, then bn = 0 for n > 1. Recall that the proper-
ties of g(z) = z + 1/z were extensively studied in Section 3.3. In particular,
this function was shown to map |z| = r > 1 onto an ellipse, and the ellipse
approaches the linear segment [−2, 2] as r approaches 1. •

The coefficient bound for functions in T , as expressed by the area theorem,
will enable us to obtain a coefficient bound for functions in S. But first we
need the following:

Lemma 11.36. If f(z) ∈ S, then z
√

f(z2)/z2 ∈ S.

Proof. Set f(z) = z +
∑∞

n=2 anzn. Then

f(z2) = z2[1 + a2z
2 + a3z

4 + · · · ] := z2h(z),

where h(z) is analytic and never vanishes in the unit disk. Therefore, choosing
a branch of (h(z))1/2 with (h(0))1/2 = 1, we see that g(z) defined by

g(z) = z

√
f(z2)

z2
= z

√
1 + a2z2 + a3z4 + · · · (11.15)

is analytic with g(0) = 0 and g′(0) = 1. To prove that g(z) is univalent,
suppose g(z1) = g(z2). Then f(z2

1) = f(z2
2), and the univalence of f(z) shows

that z2
1 = z2

2 , that is, z1 = ±z2. But from (11.15), we see that g(z) is an odd
function. Hence, z1 = −z2 implies g(z1) = −g(z2), which is a contradiction
unless z1 = z2 = 0. Therefore z1 = z2, thus establishing the univalence of
g(z).

Remark 11.37. It was necessary to write z
√

f(z2)/z2 instead of
√

f(z2)
because f(z2) has a zero at the origin, which makes the expression√

f(z2) = e(1/2) Log f(z2)

meaningless. •
Theorem 11.38. If f(z) = z + a2z

2 + · · · is in S, then |a2| ≤ 2.

Proof. By Lemma 11.36, g(z) = z
√

f(z2)/z2 ∈ S. We can verify from the
expansion in (11.15) that g′′′(0) = 3a2. Thus we may write

g(z) = z +
a2

2
z3 + · · · .

In view of Theorem 11.32, the Laurent expansion for 1/g(1/z) shows that

1
g(1/z)

=
1

(1/z)[1 + (a2/2)z2 + · · · ] = z − a2

2
1
z

+ · · · ∈ T .

Applying Theorem 11.33, we find that |a2/2|2 ≤ 1, i.e., |a2| ≤ 2.
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Remark 11.39. Retracing the steps in the proof, we can determine when
equality holds. For if a2 = 2eiα, α real, then 1/g(1/z) = z − eiα/z. But this
means that g(z) = z/(1 − eiαz)2 = z

√
f(z2)/z2, so that

f(z) =
z

(1 − eiαz)2
= z + 2eiαz2 + 3e2iαz3 + · · · . (11.16)

For each α ∈ R, this function is known as the Koebe function Moreover, it is
easy to verify that the functions f maps |z| < 1 onto the w plane cut along
the ray with constant argument from −1

4e−iα to ∞. •
The functions in (11.16) are extremal for Theorem 11.38 in the sense that

there is equality on the bound for the second coefficient. Impressed by the
fact that the Koebe function appears in many problems concerning the class
S, Bieberbach asked whether we always have |an| ≤ n. This give rise to the
famous

Bieberbach Conjecture. If f(z) = z +
∑∞

n=2 anzn is in S, then |an| ≤ n
for every n.

Theorem 11.38 proves the conjecture for n = 2. Although stated in 1916,
the conjecture was verified only for the values of n up to n = 7 until Louis
de Branges proved the whole conjecture in 1985. For all n the maximization
of |an| is achieved only by the Koebe function. A large amount of research in
the theory of univalent functions is centered on the Bieberbach conjecture.

The result for n = 2 can be used to prove the following elegant theorem
which shows that this mapping property is, in a sense, extremal.

Theorem 11.40. If f(z) ∈ S and f(z) �= c for |z| < 1, then |c| ≥ 1
4 .

Proof. Set f(z) = z + a2z
2 + · · · . Since f(z) �= c, the function

g(z) =
cf(z)

c − f(z)
= z +

(
a2 +

1
c

)
z2 + · · ·

is also in S. Applying Theorem 11.38 to g(z), we get |a2 + (1/c)| ≤ 2. Thus,
|1/c|− |a2| ≤ |(1/c)+a2| ≤ 2. Now, applying Theorem 11.38 to f(z), we have
|1/c| ≤ 2 + |a2| ≤ 4, and the result follows.

Remark 11.41. Theorem 11.40 is known as a covering theorem or Koebe one-
quarter theorem. It says that every function in S maps the unit disk |z| < 1
onto a domain in the w plane that contains the disk |w| < 1

4 . This result has
a lot of interesting applications in many other parts of complex analysis. By
the inverse function theorem (also by the open mapping theorem), f(|z| < 1)
contains an open neighborhood of the origin (since f(0) = 0 and f ′(0) �= 0).
The Koebe 1

4–theorem actually estimates the size of this neighborhood. •
Finally, we end the section with the following results which provides a

sufficient condition for an analytic function to be univalent.
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Theorem 11.42. If f(z) is analytic in a convex domain D, and Re f ′(z) > 0
in D, then f(z) is univalent in D.

Proof. Choose distinct points z0, z1 ∈ D. Then the straight line segment z =
z0 + t(z1 − z0), 0 ≤ t ≤ 1, must lie in D. Integrating along this path, we get

f(z1) − f(z0) =
∫ z1

z0

f ′(z) dz =
∫ 1

0

f ′(z0 + t(z1 − z0)) (z1 − z0) dt.

Dividing by z1 − z0 and taking real parts, we have

Re
{

f(z1) − f(z0)
z1 − z0

}
= Re

{∫ 1

0

f ′(z0 + t(z1 − z0)) dt

}
> 0.

Thus f(z1) �= f(z0), and f(z) is univalent in D.

Questions 11.43.

1. What kind of results could have been obtained in this section if the
functions had not been normalized?

2. What was the importance of the class T ?
3. Why was a bound on |a2| so useful?
4. Can |a2| = 2 if f(z) is a bounded function in S?
5. Why is the Koebe function extremal for so many theorems?
6. For each n, are we guaranteed the existence of a function in S for which

the absolute value of its nth coefficient is at least as large as the absolute
value of the nth coefficient for any other function in S?

Exercises 11.44.

1. Give an example of a function that is univalent but not analytic in the
disk |z| < 1.

2. (a) If f(z) ∈ S, show that for any nonzero complex number t, |t| ≤ 1,
the function f(tz)/t ∈ S.

(b) If f(z) = z/(1 − z)2 and |t0| > 1, show that f(t0z)/t0 /∈ S.
3. If f(z) = z +

∑∞
k=2 akzk is in S, show that, for each integer n, there

exists a function g(z) = z +
∑∞

k=2 bkzk in S such that bn = |an|.
4. For α real, verify that z/(1 − eiαz)3 is univalent in |z| < 1

2 , but in no
larger disk centered at the origin.

5. If f(z) ∈ S, show that z(f(zk)/zk)1/k ∈ S for every positive integer k.
6. Let f(z) be analytic in a domain D and suppose C is a closed contour

in D. Prove that
∫

C
f(z)f ′(z) dz is purely imaginary.

7. If f(z) = z +
∑∞

n=2 anzn and
∑∞

n=2 n|an| ≤ 1, show that f(z) ∈ S.
8. If f(z) = z −∑∞

n=2 |an|zn is in S, show that
∑∞

n=2 n|an| ≤ 1.




