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13

Analytic Continuation

We have previously seen that an analytic function is determined by its be-
havior at a sequence of points having a limit point. This was precisely the
content of the identity theorem (see Theorem 8.48) which is also referred to
as the principle of analytic continuation. For example, as a consequence, there
is precisely a unique entire function on C which agrees with sinx on the real
axis, namely sin z. But we have not yet explored the following question: If
f(z) is analytic in a domain D1, is there a function analytic in a different
domain D2 that agrees with f(z) in D1 ∩ D2? Analytic continuation deals
with the problem of properly redefining an analytic function so as to extend
its domain of analyticity. In the process, we come across functions for which
no such extension exists. Finally, we apply our knowledge of analytic continu-
ation to two of the most important functions in analysis, the gamma function
and the Riemann-zeta function, defined originally by a definite integral and
an infinite series, respectively.

13.1 Basic Concepts

Consider the power series

f0(z) =
∞∑

n=0

zn.

This power series converges for |z| < 1, and hence, f0(z) is analytic in the
disk |z| < 1 and represents there the function f(z) = 1/(1− z). Although the
power series diverges at each point on |z| = 1, f(z) is analytic in C \{1}. For
any point z0 �= 1, the Taylor series representation

f(z) =
∞∑

n=0

f (n)(z0)
n!

(z − z0)n (13.1)

is valid when |z − z0| < |1 − z0| (see Figure 13.1). The disk in which (13.1)
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Figure 13.1.

converges may or may not have points in common with the disk |z| < 1. For
example,

f1(z) =
∞∑

n=0

f (n)(eiα)
n!

(z − eiα)n (0 < α < 2π)

converges in a disk that overlaps |z| < 1; but the disk, |z − 2| < 1, in which

f2(z) =
∞∑

n=0

f (n)(2)
n!

(z − 2)n

converges does not. In Figure 13.2, we show the domains in which f0(z),
f1(z), and f2(z) converge. In their respective domains of convergence, they all
represent the same function f(z) = 1/(1 − z). In addition, the integral∫ ∞

0

e−t(1−z) dt

Figure 13.2.
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converges for Re z < 1 and it can be easily checked that the integral represents
f(z) = 1/(1 − z) in this half-plane. But they agree with f0(z) =

∑∞
n=0 zn

(|z| < 1) for a certain value of z although they appear different. In fact
they agree with f(z) = 1/(1 − z) which is analytic for all z �= 1. So we see
that apparently unrelated functions may actually represent the same analytic
function in different domains.

Suppose f0(z) is known to be analytic in a domain D0. We wish to deter-
mine the largest domain D ⊃ D0 for which there exists an analytic function
f(z) such that f(z) ≡ f0(z) in D0. As we have just seen in the first example,
C \{1} is the largest domain containing |z| < 1 in which an analytic function
may be defined that agrees with f0(z) =

∑∞
n=0 zn in |z| < 1. In our terminol-

ogy, we say that f0 has an analytic continuation from the unit disk |z| < 1
into the punctured plane C \{1}. To see how one can carry out the process of
analytic continuations, we need to introduce several definitions.

A function f(z), together with a domain D in which it is analytic, is said
to be a function element and is denoted by (f,D). Two function elements
(f1, D1) and (f2, D2) are called direct analytic continuations of each other iff

D1 ∩ D2 �= ∅ and f1 = f2 on D1 ∩ D2.

Whenever there exists a direct analytic continuation of (f1, D1) into a domain
D2, it must be uniquely determined, for any two direct analytic continuations
would have to agree on D1 ∩ D2, and by the identity theorem (see Theorem
8.48) would consequently have to agree throughout D2. That is, given an
analytic function f1 on D1, there is at most one way to extend f1 from D1

into D2 so that the extended function is analytic in D2. Thus, one of the main
uses of this idea is to extend the functional relations, initially valid for a small
domain D1, to a larger domain D2. Sometimes such an extension may not be
possible. For instance, if D1 is the punctured unit disk 0 < |z| < 1 and D2 is
the unit disk, then the function f1(z) = 1/z cannot be extendable analytically
from D1 into D2. Similarly, if

D1 = C \{z : Re z ≤ 0, Im z = 0}, and D2 = C,

then, for f1(z) = Log z, no extension from D1 to D2 is possible.

Remark 13.1. Consider the series

f1(z) =
∞∑

n=1

zn

n2
.

This series converges for |z| ≤ 1 and f1(z) is analytic in the disk |z| < 1, and
represents the function

f(z) = −
∫ z

0

Log (1 − t)
t

dt.
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However, f1(z) cannot be continued analytically to a domain D with 1 ∈ D,
since

f ′′
1 (z) =

∞∑
n=2

n − 1
n

zn−2 −→ ∞ as z → 1+.

This observation shows that the convergence or divergence of power series at
a point on the circle of convergence does not determine whether the function
which defines the series can or cannot be continued along that point. •

The property of being a direct analytic continuation is not transitive. That
is, even if (f1, D1) and (f2, D2) are direct analytic continuations of each other,
and (f2, D2) and (f3, D3) are direct analytic continuations of each other, we
cannot conclude that (f1, D1) and (f3, D3) are direct analytic continuations
of each other. A simple example of this occurs whenever D1 and D3 have no
points in common. However, there is a relationship between f1(z) and f3(z)
that is worth exploring.

Suppose {(f1, D1), (f2, D2), . . . , (fn, Dn)} is a finite set of function ele-
ments with the property that (fk, Dk) and (fk+1, Dk+1) are direct analytic
continuations of each other for k = 1, 2, 3, . . . , n− 1. Then the set of function
elements are said to be analytic continuations of one another. Such a set of
function elements is then called a chain.

Example 13.2. Define (see Figure 13.3)

Figure 13.3. Illustration for a chain with n = 3
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f1(z) = Log z for z ∈ D1

f2(z) = Log z for z ∈ D2

f3(z) = Log z + 2πi for z ∈ D3.

Then {(f1, D1), (f2, D2), (f3, D3)} is a chain with n = 3. Note that 0 =
f1(1) �= f3(1) = 2πi. •

Note that (fi, Di) and (fj , Dj) are analytic continuations of each other if
and only if they can be connected by finitely many direct analytic continua-
tions. If γ : [0, 1] → C is a curve and if there exists a chain {(fi, Di)}1≤i≤n,
of function elements such that

γ([0, 1]) ⊂ ∪n
i=1Di, z0 = γ(0) ∈ D1, zn = γ(1) ∈ Dn,

then we say that the function element (fn, Dn) is an analytic continuation of
(f1, D1) along the curve γ. That is a function element (f,D) can be analyt-
ically continued along a curve if there is a chain containing (f, D) such that
each point on the curve is contained in the domain of some function element
of the chain. As another example, the domains of a chain are also shown in
Figure 13.4. In some situations, analytic continuation of function element are
carried out easily by means of power series. In this case, a chain is a sequence
of overlapping disks.

Figure 13.4. Illustration for a chain

Given a chain {(f1, D1), (f2, D2), . . . , (fn, Dn)}, can a function f(z) be
defined such that f(z) is analytic in the domain {D1 ∪ D2 ∪ · · · ∪ Dn}?
Certainly this can be done when n = 2. The function

f(z) =
{

f1(z) if z ∈ D1

f2(z) if z ∈ D2,

is analytic in D1∪D2. If D1∩D2∩ · · · ∩Dn �= ∅, we can show by induction that
f defined by f(z) = fi(z) for z ∈ Di (i = 1, 2, . . . , n) is analytic. However,
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0

Figure 13.5.

the proof for the general case fails. Consider the four domains illustrated in
Figure 13.5. For a fixed branch of log z, set f1(z) = log z in D1. The function
element (f1, D1) determines a unique direct analytic continuation (f2, D2),
which determines (f3, D3), which determines (f4, D4). We thus have the chain
{(f1, D1), (f2, D2), (f3, D3), (f4, D4)}. However, in the domain D1∩D4 it is not
true that f1(z) = f4(z). We actually have f4(z) = f1(z)+2πi for all points in
D1∩D4. The difference in the two functions lies in the fact that the argument
of the multiple-valued logarithmic function has increased by 2π after making a
complete revolution around the origin. Note also that we can continue (f1, D1)
into the domain D3 by different chains and come up with different functions.
For the chains {(f1, D1), (f2, D2), (f3, D3)} and {(f1, D1), (g1, D4), (g2, D3)},
we have the values of f3 and g2 differing by 2πi. Before we continue the
discussion, let us present our case by a concrete example.

Example 13.3. Consider the function f(z), initially defined on the disk D =
{z : |z − 1| < 1} by the series expansion

f(z) = z1/2 = 1 +
1
2
(z − 1) − 1

8
(z − 1)2 + · · · .

Here it is understood that we start with the series representation of the prin-
cipal branch of

√
z:

f(z) = e(1/2) Log z = (1 + (z − 1))1/2.

Note also that f is analytic in D. Let γ : [0, 2π] → C be the closed contour
given by γ(t) = eit, starting from z0 = γ(0) = 1. Then f(z) actually has an
analytic continuation along γ. In fact, we have an explicit convergent power
series about eit (write z1/2 = eit/2[1 + (z − eit)/eit]1/2):

ft(z) = eit/2 +
1
2
e−it/2(z − eit) +

1
2

(
1
2
− 1

)
1
2!

e−3it/2(z − eit)2 + · · · ,



13.1 Basic Concepts 451

where z ∈ Dt = {z : |z − eit| < 1}. Thus, after one complete round along the
unit circle, we end up at z = 2π by

f2π(z) = −
[
1 +

1
2
(z − 1) − 1

8
(z − 1)2 + · · ·

]

which is just the other branch of
√

z. The initial and final function elements
in this case are (e(1/2) Log z, D) and (−e(1/2) Log z, D), respectively. Also, we
observe that the domain formed by the union of all the domains Dt (which
can be clearly covered by finitely many such disks), 0 ≤ t ≤ 2π, surrounding
the origin is not simply connected. In the case of a simply connected domain,
the result of the continuation will be unique, no matter what chain is used.
This is the substance of the Monodromy Theorem. •

The difference between single-valued and multiple-valued functions may
be viewed from another point of view. Suppose f(z) is analytic in a domain
D. A point z1 is said to be a regular point of f(z) if the function element (f,D)
can be analytically continued along some curve from a point in D to the point
z1. The set of all regular points of f(z) is called the domain of regularity for
f(z).

As we have seen, the function f0(z) =
∑∞

n=0 zn has domain of regularity
{z : z �= 1}. Note that the function f(z) = 1/(1− z) is analytic in the domain
of regularity for f0(z) and agrees with f0(z) at all points where they are both
analytic.

Consider now the function

F0(z) =
∫ z

0

f0(ζ) dζ =
∫ z

0

( ∞∑
n=0

ζn

)
dζ =

∞∑
n=0

zn+1

n + 1
(|z| < 1),

where the path of integration lies in the unit disk. The function

F (z) =
∫ z

0

dζ

1 − ζ
= −Log (1 − z)

agrees with F0(z) in the disk |z| < 1, and is analytic everywhere in the plane
except z = 1 and the ray Arg (1− z) = π (i.e., the ray along the positive real
axis beginning at z = 1). The function

F1(z) = − log(1 − z) (0 < arg(1 − z) < 2π)

is a continuation of F (z) from the half-plane 0 < Arg (1−z) < π to the whole
plane, excluding the point z = 1 and the ray Arg (1 − z) = 0.

Thus the domain of regularity for

F0(z) =
∞∑

n=0

zn+1

n + 1
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is {z : z �= 1}. Note, however, that there does not exist a function that is
both analytic in the domain of regularity for F0(z) and agrees with F0(z) in
the disk |z| < 1. As we shall see by the next theorem, this phenomenon occurs
only because {z : z �= 1} is a multiply connected domain.

Remark 13.4. We say that the multiple-valued function log(1− z) is regular
in the domain {z : z �= 1} because each such point is a regular point. Some
authors allow multiple-valued functions to be analytic. Their definition of
analytic then corresponds to our definition of regular. This next theorem shows
us that a regular function is always single-valued (hence analytic) in a simply
connected domain. •
Theorem 13.5. (Monodromy Theorem) Let D be a simply connected do-
main, and suppose f0(z) is analytic in a domain D0 ⊂ D. If the function
element (f0, D0) can be analytically continued along every curve in D, then
there exists a single-valued function f(z) that is analytic throughout D with
f(z) ≡ f0(z) in D0.

Proof. We outline the proof, leaving some details for the interested reader.
Suppose the conclusion is false. Then there exist points z0 ∈ D0, z1 ∈ D,
and curves C1, C2 both having initial point z0 and terminal point z1 such
that (f0, D0) leads to a different function element in a neighborhood of z1

when analytically continued along C1 than when analytically continued along
C2 (see Figure 13.6). This means that (f0, D0) does not return to the same
function element when analytically continued along the closed curve C1 −C2.

Figure 13.6.

To prove the theorem, it thus suffices to show that the function element
(f0, D0), D0 ⊂ D, can be continued along any closed curve lying in D and
return to the same value. In the special case that the closed curve C is a
rectangle, the proof will resemble that of Theorem 7.39.

Divide the rectangle C into four congruent rectangles, as illustrated in
Figure 7.16. Continuation along C produces the same effect as continuation
along these four rectangles taken together. If the conclusion is false for C,
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then it must be false for one of the four sub-rectangles, which we denote by
C1. We then divide C1 into four congruent rectangles, for one of which the
conclusion is false. Continuing the process, we obtain a nested sequence of
rectangles for which the conclusion is false. According to Lemma 2.25, there
is exactly one point, call it z∗, belonging to all the rectangles in the nest.

Since z∗ ∈ D, there exists a function element (f∗, D∗) with z∗ ∈ D∗ ⊂ D.
For n sufficiently large, the rectangle Cn of the nested sequence is contained
in D∗. But this means that f∗(z) is analytic in a domain containing Cn,
contrary to the way Cn was defined. This contradiction concludes the proof
in the special case in which the curve is a rectangle. For the general proof, see
Hille [Hi].

Suppose f(z) is analytic in a domain D and z0 is a boundary point of D.
The point z0 will be a regular point of f(z) if, for some disk D0 centered at
z0, there is a function element (f0, D0) such that f0(z) ≡ f(z) in the domain
D0 ∩ D. Any boundary point of D that is not a regular point of f(z) is said
to be a singular point of f(z).

For the function f(z) =
∑∞

n=0 zn (|z| < 1), we have seen that each point
on the circle |z| = 1 is a regular point except for the point z = 1. That
all points on the circle cannot be regular is a consequence of the following
theorem.

Theorem 13.6. If the radius of convergence of the series f(z) =
∑∞

n=0 anzn

is R, then f(z) has at least one singular point on the circle |z| = R.

Proof. Denote the disk |z| < R by D, and suppose that all points on |z| = R
are regular points. Then, for each point zα on the circle, we can find a function
fα defined in a disk Dα centered at zα such that the function element (fα, Dα)
is a direct analytic continuation of (f,D). Since ∪αDα covers the compact set
|z| = R, a finite subcover (D1, D2, . . . , Dn) may be found. The function g
defined by

g(z) =
{

f(z) if z ∈ D
fi(z) if z ∈ Di,

is analytic in the domain D′ = D ∪ D1 ∪ D2 ∪ · · · ∪ Dn. Since D′ contains
the disk |z| ≤ R, the domain must also contain the disk |z| ≤ R + ε for some
positive ε. Hence the power series representation g(z) =

∑∞
n=0 anzn is valid

in the disk |z| < R + ε, contradicting the fact that the Maclaurin series for
f(z) has radius of convergence R.

Corollary 13.7. If f(z) is analytic in the disk |z − z0| < R and the Taylor
series expansion about z = z0 has radius of convergence R, then f(z) has at
least one singular point on the circle |z − z0| = R.

Proof. Set ζ = z − z0, and apply the theorem to f(ζ).

Although we are guaranteed that a power series must have singular points
on its circle of convergence, determining their location is, in general, a difficult
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problem. By placing a restriction on the coefficients, we can locate a particular
singular point. Here is one of the results that we have in this direction.

Theorem 13.8. Suppose f(z) =
∑∞

n=0 anzn has radius of convergence R <
∞. If an ≥ 0 for every n, then z = R is a singular point of f .

Proof. If z = R is not a singular point, then f(z) is analytic in some disk
D0 : |z−R| < ε. For a positive number ρ (< R) sufficiently close to R, we can
find an open disk D1 centered at z = ρ that contains the point z = R and is
contained in D0. Then the Taylor series

∞∑
n=0

f (n)(ρ)
n!

(z − ρ)n (13.2)

converges at a point z = R + δ (δ > 0) (see Figure 13.7).

Figure 13.7.

According to Theorem 13.6, the series
∑∞

n=0 anzn has a singular point
somewhere on the circle |z| = R, say Reiθ0 . Hence the Taylor series

∞∑
n=0

f (n)(ρeiθ0)
n!

(z − ρeiθ0)n

has radius of convergence R−ρ (if the radius of convergence were larger, then
Reiθ0 would not be a singular point). Note that for each n we have

f (n)(ρeiθ0) =
∞∑

k=n

k(k − 1) · · · (k − n + 1)ak(ρeiθ0)k−n. (13.3)

Since an ≥ 0, we obtain from (13.3) the inequality

∣∣∣f (n)(ρeiθ0)
∣∣∣ ≤ ∞∑

k=n

k(k − 1) · · · (k − n + 1)akρk−n = f (n)(ρ).
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Thus
1

R − ρ
= lim sup

n→∞

∣∣∣∣f (n)(ρeiθ0)
n!

∣∣∣∣
1/n

≤ lim sup
n→∞

∣∣∣∣f (n)(ρ)
n!

∣∣∣∣
1/n

,

which means that the radius of convergence of (13.2) is at most R − ρ. This
contradicts the fact that the series converges at z = R + δ. Therefore, z = R
is a singular point of f(z).

We have shown that a power series must have at least one singular point on
its circle of convergence. The question arises as to whether there is an upper
bound on the number of singular points on the circle. We will show that it is
possible for every such point to be singular. If f(z) is analytic in a domain
whose boundary is C, and every point on C is a singular point of f(z), then
C is said to be the natural boundary of f(z). In such a case, the domain of
regularity is the same as the domain of analyticity.

We will make use of the following lemma in constructing a power series
with a natural boundary.

Lemma 13.9. Suppose that f(z) =
∑∞

n=0 anzn has a radius of convergence
R. If f(reiθ0) → ∞ as r → R, then the point Reiθ0 is a singular point of f(z).

Proof. If Reiθ0 is a regular point, then there is a function g(z) that is analytic
in a disk centered at Reiθ0 and agrees with f(z) for |z| < R. But then

lim
r→R−

f(reiθ0) = lim
r→R−

g(reiθ0) = g(Reiθ0),

contradicting the fact that the limit on the left side is infinite.

Consider now the function

f(z) =
∞∑

n=0

z2n

= z + z2 + z4 + z8 + · · · ,

which converges (and so is analytic) in the disk |z| < 1. We will show that the
circle |z| = 1 is a natural boundary for the function f(z). First observe that
f(z) → ∞ as z → 1 along the real axis, so that z = 1 is a singular point (this
is also a consequence of Theorem 13.8). Note that f(z) satisfies the relation
f(z) = z+f(z2). Hence f(z) and f(z2) simultaneously approach ∞. But then
f(z2) → ∞ when z2 → 1 through real values, thereby making −1 a singular
point. This gives insight into the general method. The function f(z) satisfies
the recursive relationship

f(z) = z + z2 + z4 + · · · + z2n−1
+ f(z2n

).

For each fixed n, we have

|f(z)| ≥
∣∣∣f(z2n

)
∣∣∣− n (|z| < 1).
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Since f(z2n

) → ∞ along each ray tending to a 2n-th root of unity, it follows
that each 2n-th root of unity is a singular point. That is, all points of the form
e(2kπ/2n)i, where k and n are positive integers, are singular points. Now every
neighborhood of any other point on the unit circle must contain one of these
2n-th roots of unity. Hence no point on the unit circle is a regular point. That
is, |z| = 1 is a natural boundary for f(z).

A similar argument may be used for

f(z) =
∞∑

n=0

zn!,

which is analytic in the disk |z| < 1. If z = re2π(p/q)i, where p and q are
positive integers and 0 < r < 1, then (since e2π(p/q)n!i = 1 for all n ≥ q) it
follows that

|f(z)| =

∣∣∣∣∣
q−1∑
n=0

rn!e2π(p/q)n!i +
∞∑

n=q

rn!

∣∣∣∣∣ ≥
∞∑

n=q

rn! − q. (13.4)

Since the right-hand side of (13.4) tends to ∞ as r tends to 1, all points of
the form e2π(p/q)i are singular points. But these points are dense on |z| = 1,
so that the unit circle is a natural boundary for f(z).

Since a power series converges in a disk, its boundary must be a circle. But
we have defined natural boundary to include a function for which the domain
of analyticity need not be a disk. Consider the function

f(z) =
∞∑

n=0

e−n!z.

Since the series converges uniformly for Re z ≥ δ > 0, the function f(z) is
analytic for Re z > 0. We now show that the imaginary axis is a natural
boundary for f(z).

Suppose z = x + 2π(p/q)i, where p is an integer, q is a positive integer,
and x is a positive real number. Then

|f(z)| =

∣∣∣∣∣
q−1∑
n=0

e−n!(x+2π(p/q)i) +
∞∑

n=q

e−n!x

∣∣∣∣∣ ≥
∞∑

n=q

e−n!x − q. (13.5)

Because the right side of (13.5) tends to ∞ as x tends to 0, it follows that
all points of the form 2π(p/q)i are singular points. But these points are dense
on the imaginary axis so that the imaginary axis furnishes us with a natural
boundary for f(z).

Remark 13.10. Let Δ be the unit disk |z| < 1 and let γ : [0, 1] → Δ be a
curve with γ(0) = 0 and D be such that 0 ∈ D ⊆ Δ. Then there is always
an analytic continuation of (

∑∞
n=0 zn!, Δ) along γ. However, if γ1 : [0, 1] → C
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is given by γ1(t) = 2it, there is no analytic continuation of (
∑∞

n=0 zn!, Δ)
along γ1.

Similar comments apply for the function element (
∑∞

n=0 z2n

, Δ). •
Questions 13.11.

1. If f(z) = z in a domain D0, can f(z) be analytic in a domain D1 even
though f(z) �= z in D1?

2. Can two functions, analytic in the disk |z| < 1, agree at infinitely many
points there and not agree everywhere in the disk?

3. Can an analytic continuation always be transformed into a direct ana-
lytic continuation?

4. Is it possible that the function elements (f,D1) and (g, D2) can be
connected by an infinite chain of function elements, but by no finite
subchain?

5. Why is the domain of regularity a domain?
6. What is the difference between a singular point and a singularity? A

regular point and a point of analyticity?
7. Can infinitely many points on the boundary C of a domain be singular

without C being a natural boundary?
8. If D1, D2, . . . , Dn are domains, when is their union a domain?
9. Is the converse of Lemma 13.9 true?

10. Is there a relationship between gaps in the coefficients of the Maclaurin
series for f(z) and the circle of convergence being a natural boundary?

11. Is there a relationship between the Cauchy Theorem and the Mon-
odromy Theorem?

12. What does the Monodromy theorem tell us about log z? About
√

z?

Exercises 13.12.

1. Given a set of real numbers 0 ≤ θ1 < θ2 < · · · < θn < 2π, construct a
function f(z) such that
(i) f(z) is analytic in |z| < 1;
(ii) the only singular points of f(z) on the unit circle are at

eiθ1 , eiθ2 , . . . , eiθn .
2. Given (f1, D1), where f1(z) =

∑∞
n=0 zn and D1 = {|z| < 1}, construct

a chain {(f1, D1), (f2, D2), . . . , (fn, Dn)}.
3. Show that the set of regular points of an analytic function is open, and

the set of singular points is closed.
4. (a) Show that f(z) =

∑∞
n=0[z

2n+1
/(1−z2n+1

)] is analytic in the domain
|z| < 1 and the domain |z| > 1, and that |z| = 1 is a natural
boundary for the function in each domain.

(b) Determine f(z) in each of these domains in closed form.
5. Show that |z| = 1 is a natural boundary for

∑∞
n=0 z3n

.
6. Suppose

∑∞
n=0 anzn! (an > 0) has radius of convergence R. Show that

|z| = R is a natural boundary.
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7. Suppose f(z) =
∑∞

n=0 anzn is analytic for |z| < 1 and that an is real
for each n. If

∑k
n=1 an → ∞ as k → ∞, show that z = 1 is a singular

point for f(z).
8. Suppose f(z) =

∑∞
n=0 anzn has radius of convergence 1 and that the

only singularities on the circle |z| = 1 are simple poles. Show that the
sequence {an} is bounded.

9. Show that f(z) =
∫ 1

0
(1− tz)−1 dt is an analytic continuation of f0(z) =∑∞

n=1 zn−1/n from the unit disk |z| < 1 into the whole complex plane
minus the interval [1,∞).

10. Suppose f(z) =
∑∞

n=0(−1)nanzn has radius of convergence R and an ≥
0 for every n. Show that z = −R is a singular point.

13.2 Special Functions

There are functions which arise so frequently in complex analysis that they
have intrinsic interest. The gamma function of Euler and the zeta function
of Riemann are two such “special functions” which require special attention.
As we have seen in the previous chapter, the gamma function is meromorphic
with simple poles at 0,−1,−2, . . . , and it is free of zeros. Its reciprocal is an
entire function, with a simple zero at each nonpositive integers and with no
other zeros. This may be expressed as

1
Γ (z)

= zeγz
∞∏

k=1

(
1 +

z

k

)
e−z/k, (13.6)

where

γ = lim
n→∞

(
n∑

k=1

1
k
− lnn

)
.

Thus we may rewrite (13.6) as

1
Γ (z)

=
[

lim
n→∞ ze[1+(1/2)+(1/3)+ ···+(1/n)]z−z ln n

]
lim

n→∞

n∏
k=1

(
z + k

k

)
e−z/k

= lim
n→∞

[
ze−z ln n

n∏
k=1

(
1 +

z

k

)]

= lim
n→∞

z(z + 1)(z + 2) · · · (z + n)
nzn!

.

This leads to an alternate expression for the gamma function, namely

Γ (z) = lim
n→∞

n!nz

z(z + 1) · · · (z + n)
, (13.7)
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which is defined for all values except zero and the negative integers. Equation
(13.7) is referred to as “Gauss’s formula”. Therefore, for all values of z with
z �= 0,−1,−2, . . . , we get that

Γ (z + 1) = lim
n→∞

nz

z + n + 1

(
n!nz

z(z + 1) · · · (z + n)

)
= zΓ (z).

In this way, we obtain an alternate proof of the functional equation of the
gamma function shown in the previous chapter. There is still one more method
to obtain this equation as we shall see soon.

In real analysis, the gamma function is defined in terms of the improper
integral

Γ (x) =
∫ ∞

0

tx−1e−t dt (x > 0). (13.8)

Note that the integral (13.8) makes no sense when x ≤ 0. Indeed, as e−t > e−1

for all t ∈ (0, 1), and for 0 < δ < 1∫ 1

δ

tx−1e−t dt ≥ 1
e

∫ 1

δ

tx−1 dt =
1
e

(
1 − δx

x

)

which approaches ∞ as δ → 0+ for x < 0. Thus, the improper integral (13.8)
diverges for x < 0. It is easy to see that it also diverges at x = 0.

To see that the integral (13.8) converges for all positive x, we write

Γ (x) =
∫ 1

0

tx−1e−t dt +
∫ ∞

1

tx−1e−t dt = I1 + I2.

Since e−t ≤ 1 for t ≥ 0, it follows that the integral (13.8) converges at t = 0
because for each δ > 0,∫ 1

δ

tx−1e−t dt ≤
∫ 1

δ

tx−1 dt =
1 − δx

x
<

1
x

so that I1 ≤ 1/x. For large t,

tx−1e−t ≤ et/2e−t = e−t/2

so that the integral converges at ∞. In fact, since limt→∞(tx−1/et) = 0, the
integrand of I2 is also bounded so that∫ ∞

N

tx−1e−t dt ≤
∫ ∞

N

tx−1

tx+1
dt =

1
N

(N ≥ N(x)).

Hence Γ (x) is defined for all x > 0. An integration by parts gives

Γ (x + 1) =
∫ ∞

0

txe−t dt = − tx

et

∣∣∣∣
∞

0

+ x

∫ ∞

0

tx−1e−t dt = xΓ (x). (13.9)
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Note that (13.6) has been shown to satisfy Γ (x + 1) = xΓ (x) for complex
values of x. From (13.9) and the fact

Γ (1) =
∫ ∞

0

e−t dt = 1,

it follows that Γ (n + 1) = n! for all positive integers n.
Consider now the complex-valued function

Γ (z) =
∫ ∞

0

tz−1e−t dt. (13.10)

For z = x + iy, x > 0, we have∣∣tz−1
∣∣ =

∣∣∣e(x−1) Log t+iy Log t
∣∣∣ = e(x−1) Log t = tx−1.

Hence the integral (13.10) converges absolutely for x > 0, with

|Γ (z)| ≤
∫ ∞

0

∣∣tz−1e−t
∣∣ dt = Γ (x)

so that (13.10) is well defined in the half-plane Re z > 0. We wish to show
that (13.10) has two important properties: first, it is analytic for Re z > 0;
second, it agrees with (13.7) for Re z > 0. This will justify the apparently
inexcusable notation in which the same letter is used for (13.10) and (13.7).

Let K be a compact subset of the half-plane Re z > 0. For z = x+ iy ∈ K,
choose x0, x1 so that 0 < x0 ≤ x ≤ x1 < ∞. Then, we have

|Γ (z)| ≤ Γ (x) ≤
∫ 1

0

tx0−1e−t dt +
∫ ∞

1

tx1−1e−t dt < Γ (x0) + Γ (x1).

Thus Γ (z) is bounded in the infinite strip

x0 ≤ Re z ≤ x1. (13.11)

For n ≥ 1, we set

Γn(z) =
∫ n

1/n

tz−1e−t dt.

We will show that Γn(z) is analytic for Re z > 0, with

Γ ′
n(z) =

∫ n

1/n

tz−1e−t ln t dt.

To this end, we show that, on any strip of the form (13.11), the expression∣∣∣∣∣Γn(z + h) − Γn(z)
h

−
∫ n

1/n

tz−1e−t ln t dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ n

1/n

tz−1e−t

(
th − 1

h
− ln t

)
dt

∣∣∣∣∣
≤

∫ n

1/n

tx−1e−t

∣∣∣∣ th − 1
h

− ln t

∣∣∣∣ dt
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can be made arbitrarily small for |h| sufficiently small. Using the mean-value
theorem and the uniform continuity of ln t on the interval [1/n, n], we can
show that (th − 1)/h converges uniformly to ln t for 1/n ≤ t ≤ n. It thus
follows when |h| < δ(ε) that the last integral above is bounded above by

ε

∫ n

1/n

tx−1e−t dt < εΓ (x) < ε(Γ (x0) + Γ (x1)).

Hence Γn(z) is analytic (for x0 < Re z < x1), with

Γ ′
n(z) =

∫ n

1/n

tz−1e−t ln t dt.

But
lim

n→∞Γn(z) = Γ (z)

for x0 ≤ Re z ≤ x1. Since Γn(z) is locally uniformly bounded in the right
half-plane, Montel’s theorem (Theorem 11.14) may be applied to show that
Γ (z) is analytic for Re z > 0.

We now show that the integral definition (13.10) agrees with (13.7) for
x = Re z > 0. Set

Γ ∗
n(x) =

∫ n

0

tx−1

(
1 − t

n

)n

dt (x > 0, n ≥ 1).

Integrating by parts, we obtain

Γ ∗
n(x) =

tx

x

(
1 − t

n

)n∣∣∣∣
n

0

+
1
x

∫ n

0

tx
(

1 − t

n

)n−1

dt

=
1
x

∫ n

0

tx
(

1 − t

n

)n−1

dt.

Integrating by parts n − 1 more times, we get

Γ ∗
n(x) =

1
x

n − 1
n(x + 1)

n − 2
n(x + 2)

· · · 1
n(x + n − 1)

×
∫ n

0

tx+n−1 dt

=
(n − 1)!nx+n

nn−1x(x + 1) · · · (x + n)

=
n!nx

x(x + 1) · · · (x + n)
.

Thus for x > 0,

lim
n→∞Γ ∗

n(x) = lim
n→∞

n!nx

x(x + 1) · · · (x + n)
. (13.12)

If we can now show that
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lim
n→∞Γ ∗

n(x) =
∫ ∞

0

tx−1e−t dt

on the interval [1, 2], it will then follow from the identity theorem that

lim
n→∞

n!nz

z(z + 1) · · · (z + n)
=

∫ ∞

0

tz−1e−t dt

in the largest domain containing the interval [1, 2] in which both functions are
analytic; that is, the representations (13.7) and (13.10) will have been shown
to be equal in the right half-plane.

For n > N , we have

Γ ∗
n(x) >

∫ N

0

tx−1

(
1 − t

n

)n

dt (1 ≤ x ≤ 2). (13.13)

The sequence of polynomials fn(t) = (1 − t/n)n converges uniformly to e−t

on any finite interval [a, b]. Furthermore,

fn(t) ≤ fn+1(t) ≤ e−t

for n sufficiently large. Hence for each fixed x, the integrand of (13.13) (as a
function of t) converges uniformly to tx−1e−t on the interval [0, N ]. Therefore,

lim
n→∞Γ ∗

n(x) ≥ lim
n→∞

∫ N

0

tx−1

(
1 − t

n

)n

dt =
∫ N

0

tx−1e−t dt.

Since N is arbitrary, it follows that

lim
n→∞Γ ∗

n(x) ≥
∫ ∞

0

tx−1e−t dt. (13.14)

But Γ ∗
n(x) ≤

∫ n

0
tx−1e−t dt ≤

∫∞
0

tx−1e−t dt, so that

lim
n→∞Γ ∗

n(x) ≤
∫ ∞

0

tx−1e−t dt. (13.15)

Combining (13.14) and (13.15), we see that (13.10) agrees with (13.7) for
1 ≤ x ≤ 2, and consequently they must agree in the right half-plane. Hence
(13.7) (or (13.6)) may be viewed as a direct analytic continuation of the
function ∫ ∞

0

tz−1e−t dt

from the domain Re z > 0 to C \{0,−1,−2, . . . }.
Our next discussion concerns the function

ζ(s) =
∞∑

n=1

1
ns

, (13.16)
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known as the Riemann-zeta function. (Here we use the traditional notation
denoting the complex variable s = σ + it rather than z = x + iy.) This is
one of the most challenging and fascinating functions which has a natural link
connecting the set of prime numbers with analytic number theory. We have
already met this series at s = 2 and s = 4 with (p. 433 and Exercise 12.30(6))

ζ(2) = π2/6 and ζ(4) = π4/90.

Since fn(s) = n−s = e−s Log n is an entire function and for s = σ + it,

|n−s| = e−σ Log n = n−σ,

we see that the series (13.16) converges absolutely for Re s > 1 and uniformly
for Re s ≥ σ0 > 1. Hence ζ(s) represents an analytic function in the half-plane
Re s > 1. Consequently,

ζ ′(s) =
∞∑

n=1

f ′
n(s) = −

∞∑
n=2

(lnn)n−s for Re s > 1,

and more generally,

ζ(k)(s) = (−1)k
∞∑

n=2

(lnn)kn−s for Re s > 1.

Now, to see its link with the collection of prime numbers, we prove the fol-
lowing

Theorem 13.13. (Euler’s Product Formula) For σ > 1, the infinite product∏
p (1 − p−s) converges and

1
ζ(s)

=
∏
p

(
1 − 1

ps

)
, (13.17)

where the product is taken over the set P = {2, 3, 5, 7, 11, . . . } of all prime
numbers p.

Proof. Since the series
∑

p−s converges absolutely for all Re s > 1, and it
converges uniformly on every compact subset of the half-plane Re s > 1, the
infinite product (13.17) converges. Next we note that for σ > 1

ζ(s)
1
2s

=
1
2s

+
1
4s

+
1
6s

+ · · ·

so that

ζ(s)
(

1 − 1
2s

)
= 1 +

1
3s

+
1
5s

+ · · · .

Similarly, one can find that
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2. Show that the gamma function may be expressed as

Γ (z) =
∫ ∞

1

e−ttz−1 dt +
∞∑

n=0

(−1)n

n!(z + n)
.

3. Show that Re ζ(s) > 0 when Re s ≥ 2.
4. Show that (1−1/2s−1)ζ(s) is an entire function and may be represented

as
∑∞

n=1(−1)n+1/ns for Re s > 1. Where else does this series converge?

5. For 0 < Re s < 1, show that

ζ(s) =
1

Γ (s)

∫ ∞

0

ts−1

(
1

et − 1
− 1

t

)
dt.

6. Show that ζ(1 − s) = (1/2s−1πs) cos(πs/2)Γ (s)ζ(s).
7. Determine an analytic continuation of

∑∞
n=1 zn/n1/4.

8. Consider the analytic function

f(z) =
∞∑

n=1

1 + c

n + c
zn (c > −1).

Determine the largest domain to which f can be analytically continued?
Determine an analytic continuation of f from the unit disk to a larger
domain?




