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4.3 NORMALLY DISTRIBUTED PATTERNS

The multivariate normal density function has received considerable
attention due to:

(a) Its capability to portray a suitable model for many applications. (b)
Being mathematically tractable.

4.3.1 The Univariate Normal Distribution

The scalar normal distribution function given by

_ 1 (-’
p(X)—mGeXp[ o7

], —eo<x<eo (4.3.1)

is characterized by two parameters, its mean

u=Elx]= [ ap(rydx #:32)

and variance

o’ =E[(x —/1)2] = j: (x _’u)z p(x)dx 4.3.3)

and is frequently denoted by N(u,0”). Simple calculation shows that
normally distributed patterns cluster about the mean g in a way that
approximately 68.3% of them fall within the interval [pu-o,u+0],
95.5% within [ —20, 4 +20] and 99.75 within [u—30, u+30].

4.3.2 The Multivariate Normal Distribution

A generalization of the univariate normal distribution in R" is given by
the multivariate normal distribution function, defined as
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1 T v n
plx)= CXP[“E(JC -w'C(x-wl,xeR (4.3.4)

1
(2”)71/2 IC |1/2

where U is a given vector in R” and C - an nxn symmetric positive
definite matrix, with inverse C~' and determinant IC|. Under these
conditions it can be shown that p(x) is a multivariate probability
distribution function with mean g and covariance matrix C , i.e.

u =E[x]= j . Xp(x)dx 4.3.5)

C = E[(x — u)(x = )" 1= [ . (x = u)(x — )" p(x)dx (4.3.6)

where dx =dx,dx,...dx,. The elements of i are
1 =[x p(2)dx 43.7)

while those of C are

o ZJ (X = 1;)(x; =) p(x)dx 4.3.8)

m Example 4.3.1 Consider the bivariate normal distribution with its

parameters
0 20
‘ui = C =
0 01

1/2 0
Cc'= ,1C1=2
0 1

In this case
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and the distribution function is

) 1 xr x)
x)= e -2
PI)=T0 T P T

The first element of p is

2 2

1 o poo x; X,
2”\/_2_‘,; ‘Lxl exp (——4-——5—) dx,dx,

U, =

and since x; is an odd function we get U, =0 and similarly i, =0, i.e.
g=0. Once p is known the covariance matrix of p(x) can be
calculated. In particular

2 2

R S Y el X _ X
o, = NG L L, X, exp(——4--—§—) dx,dx,

2

:____r, exXp _f%_ dxz. —l—-—jw xlzexp —ilz. dxl
2 7 2 Nar T 4

The first integral clearly equals to 1. By using integration by parts, the
second integral is replaced by

2

L PR . ¥ r +—1——r 2ex A dx
Jar P T L T g e TR T )

The first part obviously vanishes and by substituting ¢ = %, the second

part becomes
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7—‘%]: 26xp( z)dt— [FJ exp( z)dt}—Z

Therefore, o,, =2 as expected.

The multivariate normal distribution is determined by n+%n(n+ 1)

parameters which are u,, 1<i<rn and c,, 1<i,j<n ; i<j. Patterns

which are known to be normally distributed create a cluster with center at
y . The shape of this cluster is determined by the covariance matrix C .

Since C is symmetric positive definite matrix, sois C ™ and the equation

(x — )" C'(x — ) =const
is a hyperellipsoid. Thus, the points in R" with constant probability

density are hyperellipsoids whose principal axes are determined by the
eigenvectors of C and their lengths - by its eigenvalues.

4.3.3 A Multiclass Multivariate Normal Distribution Problem

Consider a multiclass pattern recognition problem with pattern classes
C.,C,,...,C, in R", associated with conditional probability distributions

p(x1C) = xp[—%(x—u,-)TC,-"(x—u,-)},xe R" (43.9)

1
=€
(2”)71/2 i Cl- |1/2

for all 1<i<m. We assume an identity loss matrix and consequently get
the decision functions of Eq. (4.2.11) implemented as in Eq. (2.2.6). For
all practical purposes one can use ln[d,.(x)], 1<i<m instead of d,(x),

1<i<m. Indeed, In(¢) is a monotonic increasing function of ¢, i.e.

d,(x)>d;(x) if andonlyif In[d,(x)> ln[dj(x)] (4.3.10)
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Since p(xIC;) and therefore d,(x) includes an exponential function in its
expression, it is convenient to redefine the decision functions as

d,(x) = n p(x1C) p(C)] =10 p(x1 C)] +In(p(C)) , 1<i<m  (43.11)
By substituting the right-hand side of Eq. (4.3.9) in Eq. (4.3.11) we get

d(x)= ——Z—ln(ZTC)——;—ln IC. I—-;—(x — 1) C7i(x—u,)+In(p(C,))

and since the i—independent constant (—gln(Zrc)) can be removed, the

decision functions may be taken as

1 1 T -1
d,.(x)z——z-lnIC,.| +1n(p(C,-))——2-(x—ll,-) Cl(x—u) (4.3.12)

Thus, if the loss matrix is the identity matrix and the patterns are
normally distributed, no decision functions will produce better results than
the quadratic surfaces given by Eq. (4.3.12).

Quite frequently all the covariance matrices C; are equal, i.e.
C.=C,1<i<m

and by removing the new i-independent terms one can simplify the
decision functions and get

- 1 _ ]
d,(x)=In(p(C;))+x"C 'y, —5u?C W, 1<i<m (4.3.13)

i.e., linear decision functions (hyperplanes). If we further assume that all
the components of x are independent, i.e. 6, =0, j#k and that 0’]2. =1,

1<j<n then C is the identity matrix of order n and if also
p(C)=1/m, 1<i<m we can remove the constant In(1/m) from Eq.
(4.3.13) and get

1 .
d,-(x):xTui__iulTui,ISlSm (4.3.14)
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which is identical to Eq. (3.2.4) that was derived for classification using
the minimum-distance classifier in the case of single prototypes.

The decision boundaries obtained from Eq. (4.3.13) are

d;(x)=d,(x)—d,;(x) =In(p(C)) = In(p(C; )+ x"C™ (1, — )
—%u{C‘lui+%uZC‘luj,ISi,jSm (4.3.15)

i.e. hyperplanes. If the covariance matrices C, are not the same, the
decision boundaries are quadratic surfaces.

m Example 4.3.2 Consider a 2-D 3-class normal distribution problem
with covariance matrices

el o
oo

and p(C)) = p(C,)=1/4, p(C,)=1/2. Thus,

mean vectors

1 1 1 1
IC,1=IC,1=2 , ~TnlC)l=ZTnlCyl= 7 n2 5 IC,l=1, ~lalCyl=0
10 1 0
Cl—l :C2—1 — , C;l —
0 12 01

and the decision functions obtained by Eq. (4.3.12) are
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1 1 L0y x-l
d(x) =—§ln2—ln4—§(x1 -1x,)
0 1/2\ ™

1 L)
=—2.51n2—§ (x, -1 +§)C2

1 2 1 2
d,(x)= —2.51n2—§ x; +§()c2 -1)

1 1 0\ x—2
dy(x)=-In2——(x, - 2,x,-2)
2 0 1)\ X2

= —an—%[(xl ~2) +(x, —2)?]

The decision boundaries are the straight line

X 1
() =)y =2 L
between C, and C,, and the parabolas
) 7-3In2
() =y ()= dy(¥) =~ 20, = 4 =0
x; 7-3In2
dB(x)zdz(x)_d3(x):_I—2x1"xz +_—i__=0

between C;, C; andbetween C,, C, respectively.

4.3.4 Error Probabilities

We will now discuss the error probability associated with the Bayes
classifier for normally distributed patterns.

Consider a 2-class pattern recognition problem where the patterns of
both classes share the same covariance matrix. Let the multivariate
normal densities be
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1 1 - .
p(x | C,) ZWCXP[_E(-X' _u,')TC l(x —ll.-)} ,1<i<2 (4316)

As previously stated we can simplify the discussion and replace the
likelihood ratio s,,(x) by

t1,(x) = n[ s, ()] = In| p(x1 )]~ 1| p(x1 C,)] (4.3.17)

By virtue of Eq. (4.3.16) we obtain

1 T e 1 T vl
ho(x) =5 (x = 11,)"C ‘(x—uz)—g(x—ul) C (x—1)  (43.18)

and since C™' is symmetric this leads to

1
1o () =X"C™ (= ) = (th + 1) C7 (= 1) (4.3.19)

A commonly used 2x2 loss matrix is
Sy 8 01
L (4.3.20)
Sa1 522 10

for which the threshold value of Eq. (4.2.8) is

l — p(Cl)
w(C) (4.3.21)

Thus, in order to get minimum probability for misclassification one should
classify x € C; if and only if
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E(—C—ﬁ} (4.3.22)

t,(x)> In[ (C)

and classify x € C, otherwise. Since x is normally distributed and since
t,(x) is a linear combination of the components of x, it must also be
normally distributed. The expected value of f#,(x) with respect to C, is
(Eq. 4.3.9))

1 1 T -1
E (t,(x))=1,C (4, —#z)—-z-(#l +1,) C (U, — 1y)

1 -
=—(U, — 1) C'(u, - =tn
2(”1 uz) (H, uz) f12(x) (4.323)

The scalar

Dy, = (- #2)TC_1(#1 o, (4.3.24)

is called the Mahalanobis distance between the distributions p(xIC,) and
p(xI1C,)

By definition, the variance of #,(x) with respectto C, is
—2
Viltn) = Bl — 1 )] (4.3.25)

From Egs. (4.3.19) and (4.3.23) we get

- 1 1 _
ty— I, =[x - +1,)" —5 (- 1) 1C7 (1 — 1)
=(x— ) C7' (1, - 1) (4.3.26)

which implies

E1[(t12 - t—lz)l] = E1 [(uq - uz)TC_I(x ””1)(xT —lllT)C—l(.U] - uz)] (4327)
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By virtue of Eq. (4.3.6) we therefore have
El[(tlz - t_lz)z] =4, - /»‘z)TC_ICC—l (M, — /'Lz)
=, - #z)TC_l (M, —y) =Dy, (4.3.28)
Thus, #,(x), xe€C, is distributed normally with mean Dy and

variance D,,. Similarly, #,(x), x € C, has a normal distribution with

D, .
mea ——29— and variance D,,. Consequently

1 - (t, + D, /2)
t, >01C)=——=1 exp| —~2—121"7 idt
pt, 2) m ja p|: 2D, 12

:l—erf[af/gll/zj

l (e (t,-D,/2}
p(t, <olC)= exp| — 212/ %) | gy
12 ! 27D, - 2D, 1

— O‘_Dlz/2
_erf[ \/5; ]

where

erf (x) = \/—_;_; [© exp(~t*/2)dt

The error probability to misclassify an arbitrary x is

(4.3.29)

(4.3.30)

4.3.31)
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plerror) = p(C)) pl(t,,(x) < | C)1+ p(C,) pl(t,, (x) > 041 C,)]

o, — D, /2 o, + Dy, /2
= p(Cerf| =22 |+ p(C,)| 1 —erf| =L~ (4.3.32)
( DIZ ] 2[ ( Dlz ]}

where

o = 1{%{—2—%} (4.3.33)

In the particular case p(C,) = p(C,)= % we get o, =0, i.e.
pieron =B 2)+1-er B3 )

which yields

l (= 4.3.34
P(error):ﬁjm/z exp(—t2/2)dt ( )

The quantity D,, is the Mahalanobis distance between the distributions
p(x1C,) and p(xIC,). When this distance increases the error probability
decreases, and converges to zero if D,, — 0.

PROBLEMS

1. Consider a 2-D 2-class classification problem, where the patterns of
either class are normally distributed with the same covariance matrix

.
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The mean vectors of classes C, and C, are

ol

respectively and p(C))= p(C,)=1/2. Get the decision boundary
between the two classes.

2. Find the decision boundaries for the following 2-D 3-class
classification problem with normally distributed patterns:

1 o] 2 o] [1 0
C1: ,C2: aC1:
[o 1 [o 1 0 2
1 0 0
“1:[ ]’.uz: a“,%:[
0 -1 0

1
p(C)=p(C,)= P(Cg) = 5

3. Find the error probability of the Bayes classifier applied for Problem 1.

4. In Problem 1 choose p(C))=oa, p(C,)=1-a and draw the error
probability as a function of o.

S. Consider a 2-D 2-class classification problem with normally
distributed patterns. Assume that the vector patterns 0,007, (1,0)",
0,17, 4,7 belong to C, and (-1,0)", (0,-1)", (-1,-1)7, (=2,-2)7
to C,. Approximate KU,, C,, i=12 using only these classified

patterns and use the results to obtain the decision boundary between
the classes.




