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4.4 ESTIMATION OF PROBABILITY DENSITY

FUNCTIONS

The most important task in implementing a statistical approach for solving
pattern classification problems is estimating the density functions

p(x|C,.), 1<i<m. We will first show how to use the maximum entropy

principle to obtain the form of probability density functions.
4.4.1 Form of the Density Function

The principle of maximum entropy states that in the case where a
probability density function of a random variable is not known, the
function which maximizes the entropy of this variable subject to known
specified constraints is an appropriate choice. Any other choice would
show a bias to some information obtained from the given data. The
maximum entropy solution is easily derived when the constraints are given
in the form of averages associated with the probability density function.
Given a probability density function p(x), the associated entropy is

E =—{ p(x)In[ p(x)1dx (4.4.1)

and we assume the constraints
[f)pxydx=a, , 0<i<M (4.42)

where f,(x)=1 and o, =1. We wish to obtain p(x) which satisfies Eq.

(4.4.2) while minimizing the entropy E of Eq. (4.4.1). This is done using
Lagrange multipliers. Define

E =E+ )Afli[ffi(x)p(x)dx A (4.4.3)

i=0 x
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where the constants A,, 0<i<M are yet to be determined. By virtue of
Eq. (44.1) we get

M M
E =—[ p(x)[In[p(x)]—- %l,-f,-(x)]dx - %l,a,- (4.4.4)
The partial derivative of E, with respect to p(x) is

JE,
Ap(x)]

=— [ln[p(x)]—éliﬁ(x) +1]dx (4.4.5)

and to obtain the maximum entropy solution the integrand must vanish,
ie.

p(x)= eXp[gAi f,(x)-1] (4.4.6)

We still have freedom of choosing A, a <i <m and these coefficients are

chosen so that Eq. (4.4.2) holds. Once the form of the probability density
function is known, we may turn and perform the next step: estimating the
parameters of this density.

n Example 4.4.1 Consider a random variable x which is characterized
by

a<x<b, Tp(x)dle
0
By virtue of Eq. (4.4.6) we obtain
b
p(x)=exp(d, 1) , [exp(d, —dx=1

and therefore
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5 , a<x<b
p(x)=1""1
0 , otherwise
)
m  Example 4.4.2 Assume that the a priori information about x is
x20, [p(x)dx=1, [xp(x)dx=p
0 0
Using Eq. (4.4.6) we obtain
p(x) =exp(d, -1+ Ax)
and in order to satisfy the two constraints the density function must be
/u)exp(=x/u)y , xz20
p(x)= .
0 , otherwise
)

4.4.2 Estimating the Mean Vector and Covariance Matrix

Consider a pattern population with probability density function p(x). The
mean vector of this population is given by

B =E(x)=[xp(x)dx (4.4.7)

If the patterns are in R", then U is a vector with n components

(ly,...,1,). Let {x,}Y, denote the given patterns. An approximate to {
is simply

H=—T 2, (4.4.8)
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The covariance matrix C =(c; ) , 1< j,k <n satisfies
e = [ JO = 1) = ) p(x;,x,)dx,dx, (4.4.9)
We can also rewrite C as
C=E[(x~pu)(x—w']
=E[xx" —2xu" +uu’]
= E[xx"]—-uu’ (4.4.10)
and use the new expression to approximate C as
C = iix xI —uu”
N & Xk THE (4.4.11)

Both estimates for ¢ and for C can be conveniently used in a recursive

manner. Let N be the current number of sample patterns and assume on
additional incoming pattern. Denote by u(N), C(N) the current mean

vector and covariance matrix. Then

1 N+1

N+DH)=—— )
a )N+1.§x'

L[y
= X +Xx
N+1([=1 i N+1)

1
=ﬁ(Nﬂ(N)+ Xy.t)

(4.4.12)

where u(l) = x,. This recursive expression updates the mean vector.

In the case of the covariance matrix we obtain
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N+1

1
C(N+1)=—— xT—u(N+Du"(N +1
( )N+1i=21x,x, ( W ( )

N
_ N1+ l[gx,.xf fxy Xl )—u(N + DU (N +1)

1
:—A—EWC(N)+Nu<N)uT<N)+xN+1x£+l>

1
(N +1)?

(NU(N)+ xy, (NUT(N) + x3.) (4.4.13)

To start the calculation of C(N) we use the relation
C()=xx] —pu" 1)
to obtain C(1)=0.

m Example 4.4.3 Consider the sample patterns

«~(5) = o) =) =(3)

To start the recursive procedure we set

0 00
.u’(l):xl_(o) ) CIZ(O 0)

and then, using Eqgs. (4.4.12-13), obtain

172 23 3/4
2)= , 3) = , 4) = ,
e) (0) me) (1/3] () (3/4)
C(2)=(1/4 0], C(3):(2/9 1/9], C(4):(3/16 3/16)
0 0 1/9 2/9 3/16 11/16

»
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4.4.3 Estimation by Functional Approximation
If the form of the density function is not known we may estimate it directly

using functional approximation.
Let p(x) denote the probability density function p(xI1C) and

consider an approximate p(x) given by
B(x) = gai(p,.(x) (4.4.14)
where {¢.(x)};, are specified basis functions. We wish to minimize
E = [w(x)[p(x)— p(x)]*dx (4.4.15)

or

E= Jw(x)[p(x)—gam(x)} dx (4.4.16)

where w(x) is a specified weight function. Solving the system

oE .
_é__a_zo , l:1,---,m (4417)

provides a set of linear equations

Y.a, [w(x),(x)p,(x)dx = [w(x),(x)p(x)dx, 1<i<m (4.4.18)

=

The right-hand sides of these equations are simply the expected values of
wx)p(x), 1<i<m. If {xk},’c"=1 are given samples which belong to C,
these expected values can be estimated as

1 X
[w(x)9,(x) p(x)dx = ﬁéwW )9 (x,) (4.4.19)
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We thus replace the system given by Eq. (4.4.18) by

m N
Z}aiIW(x)¢,,(x)¢i(x)dx = %Ew(xk )9.(x,), 1<i<m (4.4.20)

i x
In the particular case where ¢,(x), 1<i<k are orthogonal with respect to
w(x), we have

{w(x)¢,-(x)¢,-(x)dx = {3’ j : (4.4.21)

and consequently

1 N
4 :N_Ai'kgiw(xk )9 (%) (4.4.22)

The expression given by Eq. (4.4.22) provides an easy way to obtain
a,(N +1) from a,(N). Indeed

N+1

1
a,(N+1)= DA gw(xk )9, (x,.)

1
= m[NA.-ai(N) + WXy, ) ()] (4.4.23)
In decision making problems, since the terms w(x;) in Eq. (4.4.22) are
independent of i and are therefore common to all the coefficients, they
can usually be eliminated from the process, without violating the
discriminatory characteristics of the coefficients. We may usually
therefore, for such problems, apply a simpler relation

1 X
@ =~ L9:(%,) (4.4.24)
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i.e. relate to the orthogonal basis functions, as if they were orthonormal
and simplifying the computations.

Since p(x) is not known, one may not be able to decide how large m
should be. Usually we start with a prefixed m and experiment with the
training set to determine whether p(x) is an acceptable approximate to

p(x). If the classification performance of p(x) is poor, we increase m

until we reach a ‘saturation’ state, i.e. until adding new terms has no effect
on the classification quality of p(x). It can be shown that in general

p(x) approaches p(x) as m — o0 and N = .

=  Example 4.4.4 Consider the two-class classification problem given in
Fig. 4.4.1

X2
C2
3+ e}
2+ o
1+-\0 o0 o
3 -2 - X1
L 1 2 3
-
C1 12
T-3

m Figure 4.4.1 Bayes classification using functional approximation.

Assuming that the entire domain of the patterns is the whole plane, one
is tempted to use the Hermite polynomials which are orthogonal over the
interval (—co, o). The first two polynomials are H,(x)=1, H,(x)=2x.
If four basis functions are considered we may choose
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¢ (x) = Hy(x)H,(x,) =1

¢, (%) = H,(x)H,(x,) =2x
¢;(x) = Hy(x)H,(x,) = 2x,
¢, (%) = H,(x))H,(x,) = 4x,x,

We may treat the functions as if they were orthonormal and obtain

1 4
@ =L3a6), 1152

1 k=1

where a'” are the coefficients associated with class I, N; — the number of

patterns in class /, and x{” are the patterns in class I. Thus

al(l):l(1+1+1+1)=1, a§1)=l(—2—4—4—6)=_4
4 4
a =i(—2—2—4—4)=—3 , ai”=%(4+8+16+24)=13
af2)=§(1+1+1+l+1)=1, a§2’=§(2+4+4+4+6)=4
a® :é(2+2+2+4+6):3,2 , al? =é(4+8+12+16+24):12.8

and consequently
p(x1C))=1-8x —6x, +52xx,

P(x1C)=1+8x +6.4x, +51.2x,x,
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The decision functions are
dl (x)= ﬁ(x I Cl)p(cl)
dz(x) = ﬁ(x I Cz)p(cz)

and by assuming p(C,) = p(C,)=1/2 we get

d,(x)= % —4x, —3x, +26x,x,

d,(x)= % +4x, +3.2x, +25.6x,x,

The decision boundary is therefore

d,(x)=d,(x)—d,(x)=—8x,—62x, +0.4x,x,=0

PROBLEMS

1. Use the maximum entropy principle to obtain the probability density
function if the information

—co

—co< x< oo, ]:p(x)dx:l, ]:xp(x)dxzu, oj:xzp(x)dx:O'2

is a priori known.

2. Given the sample patterns
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Use Eqgs. (4.4.12-13) to estimate (@), C(i), 1<i<4.

3. Apply the method of functional approximation to get estimates of
p(x|C1) and p(x|C2) where

C] = {(I’O)T ’ (1’ I)T ’ (2’1)1’ (S’O)T’ (4’ I)T}
C2 = {(_1’0)T ) (_2’ O)T ) (_2’_ 1)7', (_3’1)1’ (_3’ 2)T}

Use the first three 2-D Hermite polynomials and Eq. (4.4.24) to obtain
the coefficients.

4. Repeat problem 3 but use the first four Hermite polynomials.

5. Repeat problems 3 and 4 using Hermite orthonormal functions.
Replace H, (x) by

exp(—x>/2)

2k

H,(x)= H,(x)

but still use Eq. (4.4.24).




