
Programming in MATLAB 165

Note that C is an ASCII string in a column vector. To change it to a row
vector in characters we transpose it and then use setstr as in:

>> C = setstr(C’)
C =

MATLAB

Finally, we close the file:

>> fclose(fid_bin)

ans = 0

This value indicates that the file was successfully closed.

6.8 Passing Data Between MATLAB and Excel

A software package used in engineering, science, and finance is Excel. Excel
and MATLAB can read and write data to files. In this section we show how
such files can be used by any of the packages. For example, MATLAB can write
data separated by commas in files with extension csv, for comma separated
values, and then read by Excel, and vice versa.

6.8.1 Exporting Data to Excel

To show how we can export data from MATLAB to Excel we have the following
example.

Example 6.20 Exporting data to Excel from MATLAB

Let us consider the following data about the five countries with the largest
territories in square miles in the American continent together with their capital
cities:

Canada, Ottawa, 3849660

United States of America, Washington D.C., 3787319

Brazil, Brasilia, 3300410

Argentina, Buenos Aires, 1073596

Mexico, Mexico D.F., 759589

This data is written by MATLAB to file countries.csv. The following file
opens the file countries.csv, writes the data, and closes the file. Each country
name must have the same number of characters. Each capital name must have
ten characters, including blank spaces.

166 MATLAB R© HANDBOOK with Applications

FIGURE 6.3: Data in the file countries.csv.

% File Example_6_20.m
Country = [‘Can’; ‘USA’; ‘Bra’; ‘Arg’; ‘Mex’]

Capital=[‘Ottawa ’; ‘Washington’; ‘Brasilia ’;‘B. Aires ’;‘MexicoCity’]
Size = [3849660; 3787319; 3300410; 1073596; 759589]

handle = fopen(‘countries.csv’, ‘w’)
for i = 1: 5

fprintf(handle, ‘%10s, %10s, %7d \n’,...
Country(i, :), Capital(i, :), Size(i, :))

end

fclose(handle)

Now we open the file countries.csv with the Wordpad and we see the con-
tents shown in Figure 6.3. We note that it is in comma-separated-values for-
mat. The commas are called separators or delimiters. Now we proceed to open
the file with Excel. Since the file was not created by Excel, it has to be im-
ported to Excel. The Import Wizard is automatically opened. It consists of
three windows. The first window is shown in Figure 6.4. Here we indicate that
the data is delimited by commas as indicated. After pressing the Next button
the second window for the Import Wizard opens and here we indicate that
the data is delimited by commas as shown in Figure 6.5. Finally, when we
press the Next button we get to the third window in the Import Wizard.

Here we select the columns we want to import and set the data format, as
shown in Figure 6.6. Finally, the data is shown in Excel as can be seen in
Figure 6.7.

Programming in MATLAB 167

FIGURE 6.4: Part 1 of the Import Wizard. Here we indicate that the data
is separated by commas or tabs.

FIGURE 6.5: Part 2 of the Import Wizard. Here we indicate that the data
is separated by commas.

FIGURE 6.6: Part 3 of the Import Wizard. Here we select each column and
set the data format.

168 MATLAB R© HANDBOOK with Applications

FIGURE 6.7: Data from countries.csv in Excel.

Another instruction used in MATLAB to write only numerical data to a
file and read it by Excel is the instruction csvwrite(‘file_name’, m). For
example, for the matrix A given by

>> A = [1957 10 5; 1950 10 8;1989 5 10]

A =

1957 10 5

1950 10 8

1989 5 10

We can write this matrix to a file list.csv with

>> csvwrite (‘list.csv’, A)

The file list.csv can be readily opened with Excel.

6.8.2 Exporting Excel Files to MATLAB

The instruction csv also allows numerical data transfer from Excel to
MATLAB. To show how this can be done, in Excel define the matrix A given
by

A =

⎡
⎣

1 0
100 1
2 4

⎤
⎦

The matrix in Excel is shown in Figure 6.8. We save it in a file Numbers.csv.
Now, from the MATLAB Command Window we use the instruction csvread

as csvread(‘Numbers.csv’) to obtain the data in MATLAB as follows:

>> csvread(‘Numbers.csv’)

Programming in MATLAB 169

FIGURE 6.8: Data in Excel for Numbers.csv.

ans =

1 10

100 1000

2 4

6.8.3 Reading Data from Excel Files

MATLAB can also read data from files with either extension xls or xlsx.
To describe the procedure we use the Excel data shown in Figure 6.9. This
data is saved in the file years.xlsx in the current directory for the MATLAB
session. Now, in MATLAB we look at the Current Directory window and
locate the file years.xlsx. We just double click on this file and then the
Import Wizard opens requesting the variables to be imported. Selecting the
variable to be imported (see Figure 6.10), it is displayed in the right-hand
window and then we click on the Finish button to end the importing. In the
Workspace window appears the variable which we can now use as any other
variable created in MATLAB. This is shown in Figure 6.11.

FIGURE 6.9: Data in Excel for years.xlsx.

170 MATLAB R© HANDBOOK with Applications

FIGURE 6.10: Import wizard for Excel files.

FIGURE 6.11: Import wizard for variables.

6.9 Publishing m-files from MATLAB

A very important part in programming is documentation. Sometimes this
may be either a very tedious part in the programming process or a very easy
one depending upon the programmer’s style. Fortunately, in the case of m-
language programming, MATLAB has a tool to create documentation once
a program has been finished. This is known as publishing and the end result
is a document that can be created in Word, HTML, XML, LaTeX, or Power
Point. Furthermore, it is possible to run the program documented from the
published file. We show the procedure with an example. In order to learn how
an m-file has to be structured to it, first we have to describe cell programming.

6.9.1 Cell Programming

The MATLAB editor has the option to create cells. These cells are useful to
run portions of the m-file and to create sections in the publishing process. A
cell is a portion of an m-file having certain characteristics. A cell is composed
of the following parts:

1. A beginning row which starts with a double percent sign followed by a
space and a title text.

Programming in MATLAB 171

2. Comment lines that start with a percent sign followed by a space and
text which is the body of the documentation.

3. Equations written in LaTeX style, and finally:

4. MATLAB instructions. We show the procedure with an example.

Example 6.20 Plotting of a sine function with cells

Let us suppose that we want to plot the sine function from 0 to 2π and then
we want to modify the plot. To plot the function we use

x = 0: 0.01: 2*pi;

y = sin(x);

plot(x, y)

Once the function is plotted we add title, legends to the axes and a label with:

xlabel(‘x-axis’)
ylabel(‘sine wave’)
title(‘Plot of sin x’)

Now we create the m-file using cells. In the first cell we place the first part of
the m-file and in the second cell the m-file where we add the text part. We
add comments to the m-file to make it self-explanatory. In the comment lines
we leave a blank space between the percent sign % and the beginning of the
text. The following m-file is in cell form:

%% Example of m-file using cells

%% Plot of a sine wave

% Here we plot a sine wave going from 0 to 2π
% As we know we have to create a vector for x values

% and then a vector for y values. The vector y has the

% information for the sine wave values

x = 0: 0.01: 2*pi;

y = sin(x);

plot(x, y)

%% Adding text information to a plot

% We add a title with title.

% We add a text to the x axis with xlabel.

% Finally, we add a text to y axis with yaxis.

%
xlabel(‘x-axis’)
ylabel(‘sine wave’)
title(‘Plot of sin x’)

172 MATLAB R© HANDBOOK with Applications

FIGURE 6.12: m-file divided in cells.

FIGURE 6.13: Publishing preferences.

The editor window is shown in Figure 6.12. We see that each cell is separated
by a line and that each cell has different background color. To run the file in
this mode, from the main menu we select the icon for Run and Advance and
this runs the m-file a cell at a time. After running each cell we see the result
of the second cell is the sine function plot, and the last cell result is the same
plot with a title and with axes labels. The first cell does not display anything
because there are no instructions in that cell. We now proceed to publish this
m-file.

6.9.2 Publishing m-files

Now that we have the m-file in cell mode we can proceed to publish it. The
result is a document in the format selected. The first step is to choose the
Publish tab in the MATLAB m-file editor. In the Publish icon we can choose

Programming in MATLAB 173

publishing in Word, HTML, XML, LaTeX, or Power Point. The default option
is the HTML format. If we wish to change to any of the other formats we can
do so in the Publish icon which displays the preferences window for publishing
as shown in Figure 6.13. For the example we choose the default pdf format.
In this window we can choose the button Publish . We can also do it with
the icon Publish after we close the window for the preferences. This will start
the publishing process. After a few seconds we get the pdf document shown
in Figure 6.14. We see in the pdf document that it has

1. A title,

2. A table of contents,

3. MATLAB instructions,

4. Text explaining the instructions, and

5. Plots.

We now describe each part of the document:

1. The title “Example of m-file using cells” is the first line of the first
cell (the first cell has only the title of the document).

%% Example of m-file using cells

2. The table of contents is formed by the first line of each cell. That is, the
lines with a double percent sign,

%% Adding text information to a plot

%% Plot of a sine wave

3. The MATLAB instructions are, for the second cell,

x = 0: 0.01: 2*pi;

y = sin(x);

plot(x, y)

And for the third cell

xlabel(‘x-axis’)

ylabel(‘sine wave’)

title(‘Plot of sin x’)

4. The text for each cell is the commented lines. For the second cell:

% As we know we have to create a vector for x values

% and then a vector for y values.

174 MATLAB R© HANDBOOK with Applications

TABLE 6.6: Commands for
MATLAB LaTeX

Traditional MATLAB LaTeX
Equation $$equation$$
a/b \frac{ a }{ b }
a2 a ∧ 2
ak,n a_{ k, n }
α2 \alpha ∧ 2√
a+ b \sqrt{ a + b }∫
(a+ b)dt \int { (a + b)dt }

a ≤ b a \leq b
a ≥ b a\geq b
\ \textbackslash

% The vector y has the information

% for the sine wave values.

For the third cell:

% We add a title with the instruction title.

% We add a text to the x axis with xlabel.

% We add a text to y axis with yaxis.

5. Finally, the plots are also displayed in the pdf document.

In the published document we may also include equations. They have to be
written in the LaTeX format. Table 6.6 lists some of the more used MATLAB
LaTeX formats to write equations. For example, to write

∫ √
α sin(t) dt

We use:

% $$ \int \sqrt {\alpha sin(t)}\, dt $$

Some rules have to be followed. These rules are:

1. If a row has an equation, there must be an empty comment row above
and below.

2. There must be at least a blank space between the percent sign and the
double dollar sign.

Programming in MATLAB 175

FIGURE 6.14: Top part of the deployed pdf document.

3. After a row with executable MATLAB instructions, the row has to start
with a double percent sign, that is, a new cell has to start.

We now show an example to solve a quadratic equation.

Example 6.22 Publishing an m-file with equations

To solve the quadratic equation

ax2 + bx+ c = 0

We have the solutions:

x1,2 =
−b±√

b2 − 4ac

2a

To publish these equations we have to write the m-file as

%% Solution of a second order equation

%% Introduction

% A second order equation of the form

%
% $$ ax∧2 + bx + c = 0 $$
%
% has the solutions

%
% $$ x_{1} = \frac { -b - \sqrt{b∧2 - 4ac}}{2a}$$
%
% $$ x_{2} = \frac { -b + \sqrt{b∧2 - 4ac}}{2a}$$
%
%% Example

176 MATLAB R© HANDBOOK with Applications

% As an example we solve the equation

%
% $$ 3x∧2 + 6x - 9 = 0 $$

%
% The data are then

a = 3; b = 6; c = -9;

%% Solutions

% The solutions are

%
x1 = (-b + sqrt(b∧2 - 4*a*c))/(2*a);

x2 = (-b - sqrt(b∧2 - 4*a*c))/(2*a);

%% Results

% Finally, we display the values of the roots. %
fprintf (‘x1 is a root of the second order equation %g\n’, x1)

fprintf (‘x2 is a root of the second order equation %g\n’, x2)

We publish to HTML and we get the document shown in Figure 6.15.

FIGURE 6.15: Top part of the published file in HTML format.

6.10 Concluding Remarks

MATLAB has integrated a powerful programming language called m-
language. This language allows users to produce complex programs in a very
short time when we compare it with other programming languages such as C,
C++, Visual Basic, FORTRAN, among others. In the chapter we treated in
detail several of the instructions needed to write a program in the m-language.
The process was carried out through examples going from very simple to more

Programming in MATLAB 177

complex examples containing programs. A treatment in input/output instruc-
tions was given, in particular, the case of reading to/from a file. Also the case
of transferring information between MATLAB and Excel was seen. More ad-
vanced topics such as deployment of m-files to users not having a MATLAB
license was also discussed and examples provided a good understanding of
the topic. Finally, since program documenting, also known as publishing, is
an important part of programming, MATLAB does also provide a tool for
documenting m-files. The process can be used for publishing to other different
formats, but only the process for an HTML document was used.

