
Chapter 8

Graphical User Interfaces

8.1 Creation of a GUI with the Tool GUIDE . 207
8.1.1 Starting GUIDE . 208
8.1.2 Properties of Objects in a GUI . 208
8.1.3 A Simple GUI . 210

8.2 Examples . 215
8.3 Deployment of MATLAB Graphical User Interfaces 223
8.4 Concluding Remarks . 225

A graphical user interface (GUI) is the link between a software package and
the user. In general, it is composed of a set of commands or menus, objects
and instruments such as buttons, by means of which the user establishes a
communication with the program. The GUI eases the tasks of inputting data
and displaying output data.

8.1 Creation of a GUI with the Tool GUIDE

MATLAB has a tool to develop GUIs in an easy and quick way. This tool
is called Graphical User Interface Development Environment and is better
known by its acronym GUIDE. This tool can create a GUI empty window, add
buttons and menus to our GUI, and windows to enter data and plot functions,
as well as the access to the objects callbacks. When we create a GUI with
GUIDE, two files are created: a fig-file which is the graphical interface and an
m-file which contains the functions, the description for the GUI parts, and the
callback.

A callback is defined as the action that implements an object of the GUI
when the user clicks on it or uses it. For example, when the user clicks on
a button in a GUI, a program containing the instructions and tasks to be
realized is executed. This program is called the callback. A callback is coded
in the m-language.

207

208 MATLAB R© HANDBOOK with Applications

FIGURE 8.1: GUIDE Quick Start window.

8.1.1 Starting GUIDE

GUIDE can be started from the MATLAB menu with New→ App→ GUIDE.
It can also be started by typing guide in the Command Window. Any of these
choices opens the GUIDE Quick Start window shown in Figure 8.1. Here we
can start a new GUI with an empty blank GUI where we can add and arrange
the object for the GUI. We can also start a new GUI with uicontrols, with
a set of axes and a menu already in the GUI, and finally, a GUI with question
dialog buttons. Alternatively, we can open a GUI previously started in the
tab Open Existing GUI. If we select Blank GUI we get the work window of
Figure 8.2. In this work window we see at the left a set of buttons or objects
that can be used in the GUI. (To see the object names in the buttons, in the
File menu select File → Preferences ... → GUIDE and select the option
Show names in component palette.) Each button has a function which is
described by the button’s name and it is self describing.

On the upper part we see the toolbar. It contains icons to create a new
GUI or figure, to open an existing GUI, and to save the GUI. It also has icons
to copy, paste, and cut parts of the GUI, as well as to undo and redo actions
on the GUI objects. In addition, the toolbar has icons to align the objects
in the GUI, another icon for the Editor and for the Property Inspector,
to display the browser, and to execute the GUI. Some properties are further
explained in Table 8.1.

8.1.2 Properties of Objects in a GUI

Each object that we place in the GUI has properties that can be edited with
the Property Inspector. For example, for a Push Button Figure 8.3 shows
the Property Inspector with some of the properties of this button. Some of
the most common properties are shown in Table 8.2.

Graphical User Interfaces 209

FIGURE 8.2: A blank GUI.

TABLE 8.1: Important icons in the GUIDE toolbar.

Property icon name Description

Property inspector It refers to the properties of each object in
the GUI. They include color, name, tag, value,
and the callback among others.

Align Objects It aligns the objects in the work window.
Toolbar editor It creates a toolbar in the GUI.
M-file editor It opens the MATLAB editor

to edit the callbacks.

210 MATLAB R© HANDBOOK with Applications

FIGURE 8.3: Property inspector.

8.1.3 A Simple GUI

We show with a plotting example the procedure to create a GUI. Let us sup-
pose that we wish to create a GUI that plots a user defined function. Thus,
we need a text box to enter the function, two text boxes to enter the initial
and final points in the plot, a set of axes to plot the function, and a button
to run the GUI. Additionally, we can add a button to close the GUI after we
finish.

1. The first step is to open a blank GUI work window.

2. We add the required objects.

• We start with two push buttons. A button to plot the function and
another one to close the GUI.

• Three Edit Text boxes, a text box to enter the function to be
plotted and two text boxes for the x-axis limits.

• A set of axes.

• Five Static Texts for labels. The GUI is shown in Figure 8.4.

Graphical User Interfaces 211

TABLE 8.2: Most used properties for objects in a GUI.

Property Description

Background color Changes the background color of the object.
Callback Set of instructions to be executed by the object.
Enable Activates the object.
String Mostly used in the cases of buttons, edit text

boxes, and static text boxes. It contains
the text displayed in the object.

Tag It identifies the object.

FIGURE 8.4: GUI with required objects.

3. We can stretch each of the objects to the desired final size. We also
change the String property of each object as we can see in Figure 8.5.
To change the String property, we double click on each one of the
objects to open the Property inspector and change the String in the
Static texts. The Font weight property is changed to bold. For each
of the remaining elements we clear the Strings.

4. For the Edit Text box we change the Tag property to The_function.
This is the variable name for the function to be plotted. For the remain-
ing Edit Text boxes we change the tags to Initial_x and Final_x.

5. We change the Tag properties of the push buttons to Plot_function

and CloseGUI.

6. We save the GUI as plotter.fig.

7. We now need to edit the callbacks.

8. First we edit the callback of the Close button. We only need to add the
instruction:

212 MATLAB R© HANDBOOK with Applications

FIGURE 8.5: GUI with objects stretched to its final size and final labels.

close(gcbf)

which indicates to close the figure where the object is embedded. In this
case the figure, that is the GUI, where the push button is located. To
edit the callback we select this push button and click on the mouse right
hand button to open the menu shown where we select View callbacks

→ Callback. This opens the m-file editor in the portion corresponding
to this push button. The m-file is then as follows:

% –- Executes on button press in CloseGUI.

function CloseGUI_Callback(hObject, eventdata, handles)

% hObject handle to CloseGUI (see GCBO)

% eventdata reserved - to be defined in a future version of

MATLAB

% handles structure with handles and user data (see GUIDATA)

close(gcbf)

9. We now edit the callback for the button Plot. In this callback we have
to read the function we wish to plot. We also read the lower and upper
limits for the variable x which we declare as a symbolic variable with
syms x. Finally, we plot the function in the set of axes in the GUI. When
we read data from a GUI, this data is read as a string. Thus, at some
point we have to put the data in the correct format, for example an in-
teger variable, a boolean variable, and so on. First, we open the callback
for the button Plot by right clicking on the push button and selecting
View callbacks → Callback. This opens the m-file editor. To read
the information in the strings and make it amenable for calculations we

Graphical User Interfaces 213

use the instruction eval to convert the string value we have read to a
numeric value. For example, for the lower limit of x

lower_x_value = eval(get(handles.Initial_x, ‘string’));

The instruction get fetches the string variable which is located in the
object with the handle Initial_x and the instruction eval converts it
to a real variable. A similar instruction applies for the upper x limit and
for the function to be plotted. That is,

lower_x_value = eval(get(handles.Initial_x, ‘string’));

upper_x_value = str2num(get(handles.Final_x, ‘string’));

y = eval(get(handles.The_function, ‘string’));

We are using eval and str2num to convert from string to a number.
They both accomplish the same task.

10. Now, we are ready to get the plot. We now get the x-axis points with

xx = [lower_x_value:0.2:upper_x_value];

11. The function to be plotted is now in the variable y which is a string. To
be able to accept x as a symbolic variable, we add the instruction syms

x. This makes the variable y a symbolic variable.

12. To evaluate the function y at the set of points xx we substitute the vari-
able x with the vector xx with

yb = subs(y, x, xx);

13. Now, we plot the vector yb with

plot(xx, yb)

14. Finally, we add a grid with

grid on

214 MATLAB R© HANDBOOK with Applications

FIGURE 8.6: Plot of function e(x/10)sin(x) from 0 to 9π.

15. The final callback for the push button Plot is

% –- Executes on button press in Plot_function.

function Plot_function_Callback(hObject, eventdata, handles)

% hObject handle to Plot_function (see GCBO)

% eventdata reserved - to be defined in a future version of

MATLAB

% handles structure with handles and user data (see GUIDATA)

syms x

lower_x_value = eval(get(handles.Initial_x, ‘string’));

upper_x_value = str2num(get(handles.Final_x, ‘string’));

xx = [lower_x_value:0.2:upper_x_value];

y = eval(get(handles.The_function, ‘string’));

yb = subs(y, x, xx);

plot(xx, yb)

grid on

16. To finish the GUI we add a toolbar. From the Tools menu select Toolbar
Editor When it opens change the icons as desired. For this example
we only click the OK button to display the default toolbar. Once we are
finished we save the current GUI as plotter.

Graphical User Interfaces 215

FIGURE 8.7: Initial layout for the GUI.

Note that the complete GUI is composed of the interface that is saved in
plotter.fig, that is a figure file, and the m-file plotter.m that contains the
callbacks for the objects in the GUI.

Now, to run the GUI either we type plotter in the MATLAB command
window or click on the Run icon in the GUI work window. Figure 8.6 shows a
plot for the function exp(x/10)*sin(x).

8.2 Examples

This section presents two examples introducing some of the other objects for
the GUIs. The first example shows the pulldown menu for a GUI that converts
temperature given in Fahrenheit degrees to Celsius and vice versa. The second
example is a GUI for the calculation of put and call options using the Black-
Scholes function from the Financial Derivatives toolbox.

Example 8.1 Temperature conversion

Temperature conversion among the different scales, Celsius, Fahrenheit, and
Kelvin, is possible if we know the conversion equations. They are available in
any physics textbook and they are:

F = 1.8*C + 32

K = C + 273.15

C = (F − 32)*5/9

K = (F − 32)*5/9 + 273.15

C = K − 273.15

F = 1.8*(K − 273.15) + 32

216 MATLAB R© HANDBOOK with Applications

FIGURE 8.8: GUI layout with strings and sizes changed.

FIGURE 8.9: String for the pop-up menu. Click on the icon to the right of
String.

Now we create a GUI that implements these conversion equations. The initial
GUI layout is shown in Figure 8.7. We now implement the instructions for each
object. We use the regular instructions to close the GUI and to read data. To
choose the conversion we use a Pop-up Menu and for the input temperature
data we use an Edit Text box. We have changed the strings and size of the
objects for each of the GUI components so that they look as shown in Figure
8.8. The Static Text to the right of the Edit text box for the result has a
blank string. The string for the Pop-up Menu is set by clicking on the string
property at the Property Inspector for the menu. This opens the String

window for the Pop-up Menu where we add the information shown in Figure
8.9. We now change the tags for each of the components, as shown in Table
8.3.

Graphical User Interfaces 217

TABLE 8.3: Tag names.

GUI Component Tag

Pop-up menu temp_conv
Edit box below the text Temperature input_temp
Edit box below the text Result result
Push button closeGUI
Static text for Result degrees

We save the GUI with the name Temp_converter.m. We design the GUI in
such a way that when the user chooses the conversion with the Pop-up Menu,
the conversion takes place and the result is written in the result box. The
callback we need to edit is the one corresponding to the Pop-up Menu. First
we need to read in the temperature from the Edit Text box. We do this with

temp = eval(get(handles.input_temp, ‘string’))

Note that the value of temperature stored in the Edit Text box is stored in
the variable temp. Now, we add the instructions to read the conversion from
the Pop-up Menu. The variable val indicates which conversion we implement
with:

val = get(hObject, ‘Value’);

switch val

case 2

% Celsius to Fahrenheit

resultt = temp*1.8 + 32;

set(handles.degrees, ‘string’, ‘Fahrenheit’)

case 3

% Celsius to Kelvin

resultt = temp + 273.15;

set(handles.degrees, ‘string’, ‘Kelvin’)

case 4

% Fahrenheit to Celsius

resultt = (temp − 32)*5/9;

set(handles.degrees, ‘string’, ‘Celsius’)

case 5

% Fahrenheit to Kelvin

resultt = (temp − 32)*5/9 + 273.15;

set(handles.degrees, ‘string’, ‘Kelvin’)

case 6

% Kelvin to Celsius

resultt = temp − 273.15;

set(handles.degrees, ‘string’, ‘Celsius’)

218 MATLAB R© HANDBOOK with Applications

case 7

% Kelvin to Fahrenheit

resultt = (temp − 273.15)*1.8 + 32;

set(handles.degrees, ‘string’, ‘Fahrenheit’)

end

Finally, we write the result to the edit text box result:

set(handles.result, ‘string’, resultt)

The complete callback is listed now:

% Executes on selection change in temp_conv.

%
function temp_conv_Callback(hObject, eventdata, handles)

% hObject handle to temp_conv (see GCBO).

% handles structure with handles and user data (see GUIDATA).

% Hints: contents = get(hObject, ‘String’) returns temp_conv

% contents as cell array.

% contents get(hObject,‘Value’) returns selected item

% from temp_conv.

temp = eval(get(handles.input_temp,‘string’));

val = get(hObject, ‘Value’);

switch val

case 2

% Celsius to Fahrenheit

resultt = temp*1.8 + 32;

set(handles.degrees, ‘string’, ‘Fahrenheit’)

case 3

% Celsius to Kelvin

resultt = temp + 273.15;

set(handles.degrees, ‘string’, ‘Kelvin’)

case 4

% Fahrenheit to Celsius

resultt = (temp − 32)*5/9;

set(handles.degrees, ‘string’, ‘Celsius’)

case 5

% Fahrenheit to Kelvin

resultt = (temp − 32)*5/9 + 273.15;

set(handles.degrees, ‘string’, ‘Kelvin’)

case 6

% Kelvin to Celsius

resultt = temp − 273.15;

set(handles.degrees, ‘string’, ‘Celsius’)

Graphical User Interfaces 219

FIGURE 8.10: A run for the temperature conversion GUI.

case 7

% Kelvin to Fahrenheit

resultt = (temp − 273.15)*1.8 + 32;

end

set(handles.degrees, ‘string’, ‘Fahrenheit’)

and a run is shown in Figure 8.10.

Example 8.2 Solution of the Black-Scholes equation.

In Chapter 12 we show how to calculate call and put options for European
options. There we show that we have to solve the Black-Scholes differential
equation:

∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
= rf

whose solution is given by:

1. For the call option

c = S0N(d1)Ke−rTN(d2)

2. For the put option

p = Ke−rTN(−d2)− S0N(−d1)

where

220 MATLAB R© HANDBOOK with Applications

d1 =
ln(S0

K) + (r+σ2

2)T

σ
√
T

d2 =
ln(S0

K) + (r−σ2

2)T

σ
√
T

= d1 − σ
√
T

Here N(x) is the cumulative probability distribution function for a variable
that is normally distributed with a mean of zero and a standard deviation
equal to 1, S0 is the stock price at time zero, and K is the strike price. The
function N(x) is integrated into MATLAB as normcdf(x).

In this example, we construct a GUI that has as input the stock price S0,
the strike price K, the maturity time T, the interest rate variation r, and the
volatility σ. We use the Black-Scholes function from the Financial Derivatives
toolbox that has the format:

[call, put] = blsprice(price, strike, rate, time, volatility)

For example, for the data: stock price S0 = 42, strike price K = 40, interest
rate r = 10%, maturity time T = 6 months = 0.5 years, and a volatility σ
= 20%, we have:

[call, put] = blsprice (42, 40, 0.1, 0.5, 0.2)

which gives the results for the call and put options as:

call = 4.7594 put = 0.8086

The layout for the GUI to carry out this computation is shown in Figure 8.11.
To this layout we change the strings for each Static Text, each Edit Text,
and the Push Buttons as shown in Figure 8.12. Then, we change the tags for
the Edit Text boxes with the first word in the name of the Static Text box
next to each of them. That is, the Edit Text next to Stock price has the
tag equal to Stock, and so on. For the Static Text boxes we also give the tag
name in the same way. Then the top Static Text box next to call option
we make the tag equal to call and the other one has the tag equal to put.
For the Push Buttons we give the tags Calculate and Close.

We save the GUI as BlackScholes. Now we edit the callback for the button
Close as in the previous example. In the callback for this Push Button we
add:

close(gcbf)

Graphical User Interfaces 221

FIGURE 8.11: GUI layout.

FIGURE 8.12: Final GUI layout.

The next step is to execute the Black-Scholes equation in the callback for
the button Calculate. First we read the data from the Edit Text boxes and
then execute the instruction blsprice. Finally, we write the results to the
empty Static Text boxes. The callback for the push button Calculate is
now described:

1. First we read in the variables for the Black-Scholes instruction blsprice.
We do this with the instructions eval and get. As we explained above, get
reads the string from the Edit Text and eval converts the string to a numer-
ical value assigned to the variable stock. To read the variable from the Edit

Text box Stock we use then:

222 MATLAB R© HANDBOOK with Applications

stock = eval(get(handles.Stock, ‘string’));

We read the five variables with:

stock = eval(get(handles.Stock, ‘string’));

strike = eval(get(handles.Strike, ‘string’));

int = eval(get(handles.Interest, ‘string’));

mat = eval(get(handles.Maturity, ‘string’));

vol = eval(get(handles.Volatility, ‘string’));

2. Now, we make the calculation with the blsprice solution with:

[call, put] = blsprice(stock, strike, int, mat, vol)

3. We write the results to the empty Static text boxes with

set(handles.call, ‘string’, call)

set(handles.put, ‘string’, put)

The complete callback for the push button Calculate is:

% Executes on button press in Calculate.

%
function Calculate Callback(hObject, eventdata, handles)

% hObject handle to Calculate (see GCBO)

%
% eventdata reserved - to be defined in a future version

% of MATLAB

%
% handles structure with handles and user data (see GUIDATA)

stock = eval(get(handles.Stock, ‘string’));

strike = eval(get(handles.Strike, ‘string’));

int = eval(get(handles.Interest, ‘string’));

mat = eval(get(handles.Maturity, ‘string’));

vol = eval(get(handles.Volatility, ‘string’));

[call, put] = blsprice(stock, strike, int, mat, vol);

set(handles.call, ‘string’, call);

set(handles.put, ‘string’, put);

Now we execute the GUI by clicking on the Run icon. Then we enter the
values required and the results are shown in Figure 8.13.

Graphical User Interfaces 223

FIGURE 8.13: Final GUI with data.

8.3 Deployment of MATLAB Graphical User Interfaces

MATLAB allows deployment of MATLAB files so they can be distributed
and used by other users without having a MATLAB license. These deployed
files can be used from EXCEL, .NET, Java, or as stand-alone executable files.
MATLAB has a tool called Deployment tool that guides us in the making of
executable files.

In order to run an application outside of MATLAB, the end user needs to
install the MATLAB Compiler Runtime also known as MCR. This is a set
of functions that the executable generated uses to run. Thus, it is compulsory
to install it. It can also be downloaded free of charge from the Mathworks web
page “www.mathwoks.com”.

There are three steps that have to be followed to obtain an executable file
from a GUI which is composed of m-files and fig-files. These are:

1. Create a project.

2. Add the files.

3. Build the executable file and pack the project.

Now we describe each one of the steps:

1. We start the Deployment Tool by selecting the APPS tab in the main
MATLAB window. There we select the APPLICATION DEPLOYMENT set and
click on the Application Compiler icon. We can also type deploytool at

224 MATLAB R© HANDBOOK with Applications

FIGURE 8.14: Deployment tool.

FIGURE 8.15: Loading the files to be deployed.

the Command Window. This opens the deployment menu. Then, we select the
icon for New Project and which type of executable we wish to make.

2. We fill out the information requested such as application name
(BlackScholesSolution) and additional details about it as shown in Figure
8.14. We save the project as BlackScholesSolution.prj. Now we add the
files we need in our project by clicking on the plus sign next to the message Add
main file. We work with the interface developed in Example 8.2. We start
the process by adding the m-file BlackScholes.m. The file BlackScholes.fig
and every other file needed are automatically loaded. We also check the radio
button to include the MCR in the package if the user does not have it already
(see Figure 8.15).

3. Once we have the required m-files, we proceed to build the project.
We do this by clicking on the �mark located in the top right corner of the
deployment window. When the process starts, the window shown in Figure
8.16 is opened. It is related to the deploying steps and it goes from Creating

the binaries, to Packing, and Archiving.

4. When the process is finished, we have a set of folders with the required
executable file and the MCR packed and ready for installation. The parent folder

Graphical User Interfaces 225

FIGURE 8.16: Creating the executable file to be deployed.

is the BlackScholesSolution folder and it contains three folders as follows:

• for_redistribution.

It contains the file MyAppInstaller_mcr which installs the MATLAB

Compiler Runtime (MCR).

• for_redistribution_files_only.

It contains the executable file BlackScholesSolution.exe, an icon,
a picture that is displayed before opening the application, and a
readme.txt document with installation instructions.

• for_testing.

It contains the executable file BlackScholesSolution.exe, a readme.txt
file with installation information, the image shown when opening the ap-
plication, and two other files related to the deployment process.

The folders we need to distribute are the first two: for_redistribution
and for_redistribution_files_only.

5. Now we execute the file BlackScholesSolution.exe to open the window
requesting the input data. A run produces the same window corresponding
to the application shown in Figure 8.13. As we see, it is very easy to deploy
MATLAB programs to use in a computer that does not have a MATLAB
license.

8.4 Concluding Remarks

In this chapter we have presented the techniques to create graphical user
interfaces, known as GUIs, that eases the process to execute a MATLAB
program. We have presented three examples which are representative of typical
GUIs. We have also presented the techniques to deploy GUIs and to create
executable files that can be run in a platform without a MATLAB license.

