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1- Stirling Numbers of the First Kind 

       We explore a collection of combinatorial numbers which 

complement the Stirling numbers of the second kind, the Stirling 

numbers of the first kind, denoted ( ),s n k . Stirling numbers of the 

first and second kind can be considered opposite of each other. 

The easiest way to define ( ),s n k  is by inverting the basis definition 

of for the Stirling numbers of the second kind ( n
x  in terms 

0

!

n

k

x
k

k
=

  
  
  

): 

( )
0 0

! , !
n n

n

k k

x x n
x k S n k k

k k k= =

     
=      

     
  . 

We want to write !
x

n
n

 
 
 

 in terms of the basis  
0

n
k

k
x

=
. We do so by 

using ( ) 
0

,
n

k
s n k

=
 and say that. 

                                   ( )
0

! ,
n

k

k

x
n s n k x

n =

 
= 

 
 .                           (1) 

Formula (1) implies that ( ) ( ), 1, , 0, for 0 ands n n s n k k k n= =   .  

Table of values. Using the iteration method, we can build up the 
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following table of values for the Stirling numbers of the first kind

( ) ( )1 ,
n kn

s n k
k

−

−
 

= 
 

. Such a table makes it easy to write a sum of 

factorial functions as an ordinary polynomial. The following is a 

table of values for the Stirling numbers of the first kind ( ) 
0

,
n

k
s n k

=
 

where 0 k n   and 0 9n  : 

 ( ),s n k  

        k  
n  

0 1 2 3 4 5 6 7 8 9 

0 1          

1 0 1         

2 0 −1 1        

3 0 2 −3 1       

4 0 −6 11 −6 1      

5 0 24 −50 35 −10 1     

6 0 −120 274 −225 85 −15 1    

7 0 720 −1764 1624 −735 175 −21 1   

8 0 −5040 13068 −13132 6769 −1960 322 −28 1  

9 0 40320 −109584 118124 −67284 22449 −4536 546 −36 1 

Table (1): Stirling  numbers of the first kind 

Recurrence relation. It is not hard to show that 

( )1 ! ! !
1

x x x
n x n n n

n n n

     
+ = −     

+     
. 

This identity when combined with formula (1) provides a two-term 

recurrence for ( )1,s n k+ . By definition (1) we have 

( ) ( )
1

0

1 ! 1,
1

n
k

k

x
n s n k x

n

+

=

 
+ = + 

+ 
 . 
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On the other hand 

( ) ( ) ( )
0 0

1 ! ! ! , ,
1

n n
k k

k k

x x x
n x n n n x s n k x n s n k x

n n n = =

     
+ = − = −     

+     
   

                                                         ( ) ( )
1

0

, 1 ,
n

k

k

s n k ns n k x
+

=

 = − −  , 

since ( ) ( ), 1 , 1 0s n s n n− = + = . 

Comparing the coefficients of k
x  gives us  

                  ( ) ( ) ( )1, , 1 ,s n k s n k ns n k+ = − − .                   (2) 

2- A combinatorial interpretation for ( ) ( )1 ,
n k

s n k
−

−  in terms of 

permutations. 

The factor of ( )1
n k−

−  ensures that all the entries in table (1) are 

positive integers. Let n  be a positive integer, and    1,2,3,...,n n .  

A permutation of, n  elements,  n  is a map    : n n →  which is 

one-to-one and onto.  

There are three ways to represent a permutation: 

The first representation involves 2 n  array, where the first row is 

1 2 n  while the second row is the image ( ) ( ) ( )1 2 n   . 

The second representation for   is just the second row of the 2 n

array. 

The third representation is the cycle notation of  . 

A cycle of a permutation   is a nonempty ordered subset of  n  
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given by ( )1 2 ja a a , where ( )1i ia a+ =  for 1 1i j  −  and, 

( ) 1ja a = . Because   is one-to-one and onto it can be decomposed 

into k  disjoint cycles where 1 k n  . 

The cycle representation is found by vertically tracing left to right 

through the 2 n  array. 

Example (1). We explain the three representations for the 3! 

permutations of  3  in table (2): 

       Array 

representation 

       Row 

representation 

     Cycle 

representation 

 
1 2 3

1 2 3
 

1 2 3   

( ) ( ) ( )1 2 3  

 
1 2 3

1 3 2
 

1 3 2  ( ) ( )1 23  

        
1 2 3

2 1 3
 

2 1 3  ( ) ( )12 3  

  
1 2 3

2 3 1
 

2 3 1 ( )123  

  
1 2 3

3 1 2
 

3 1 2  ( )132  

  
1 2 3

3 2 1
 

3 2 1 ( ) ( )13 2  

Table (2) permutations of  3  

Unsigned Stirling numbers of the first kind 

Let 
n

k

 
 
 

 denote the number of permutations of, n  elements,  n , 
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with exactly k  disjoint (or non-empty) cycles. This number is 

called a sign-less (or unsigned) Stirling numbers of the first kind.  

It count the number of permutations of, n  elements,  n , with 

exactly k  disjoint cycles. The notation ( ),s n k  is sometimes used 

for the unsigned Stirling numbers of the first kind. Furthermore 

define 
0

0
1

 
= 

 
. Clearly 

0
n

k

 
= 

 
  if  k n  or 0k  , 

0

0

n

k

   
   

   
; 1

n

n

 
= 

 
, and 0

0

n 
= 

 
 n . 

Example (2). For the 4 element set  , , ,a b c d , there are 
4

2
11

 
= 

 

permutations containing exactly 2 non-empty cycles. They are 

1234 1234 1234
(123)(4), (132)(4), (134)(2),

2314 3124 3241

1234 1234 1234
(134)(2), (124)(3), (142)(3),

4213 2431 4132

1234 1234 1234
(234)(1), (243)(1),

1342 1423 2143

     
= = =     

     

     
= = =     

     

   
= =   

   
(12)(34),

1234 1234
(13)(24), (14)(23).

3412 4321

 
= 

 

   
= =   

   

 

Lemma (1). The Stirling numbers obey the recurrence relation: 

                      
1

1

n n n
n

k k k

+     
= −     

−     
,                         (3) 

The left side of equation (3) counts the permutations of  1n +  with 

http://en.wikipedia.org/wiki/Cyclic_permutation
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exactly k  cycles. We require that the right side of equation (3) also 

counts this quantity. 

Let   be a permutation of  1n +  with exactly k  cycles. Either   

has a cycle of the form ( )1n +  or 1n+  is in a cycle of length greater 

than 1, i.e. 1n+ is part of a cycle which contains at least 2 elements. 

If ( )1n +  is an independent cycle the rest of   is a permutation of 

 n  with 1k −  cycles. Such permutations are counted by 
1

n

k −

 
 
 

. 

Suppose that 1n+  is not isolated. Then it must belong to one of the 

cycles of 2 , where 2  is a permutation of  n  with k  cycles. 

Represent 2  as 

( ) ( ) ( )
1 211 12 1 21 22 2 1 2 kj j k k kja a a a a a a a a  

 where 
1

k

i

i

j n
=

=  working from left to right there are n  ways to 

insert 1n+  into these k  cycles, namely by placing it immediately to 

the right one of the 
iija  digits in the cycle structure. 

The rule of products implies there are 
n

k
n
 
 
 

such permutations of 

 1n +  which have k  cycles, none of which have the form ( )1n + . 

 Applying the rule of sums, we obtain the right side of formula (3). 

      Assume that the sign-less Stirling numbers of the first kind “or 

Stirling cycle number” is ( ) ( )1 ,
n kn

k
s n k

− 
= − 

 
. 
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Multiply the two sides of equation (2) by ( )
1

1
n k+ −

−  

( ) ( ) ( ) ( ) ( ) ( )
1 1

1 1, 1 , 1 1 ,
n k n k n k

s n k s n k ns n k
+ − + − −

− + = − − + − .    (4) 

Equation (4) is exactly equation (3) with the substitution 

( ) ( )1 ,
n kn

k
s n k

− 
= − 

 

. 

In other words, 
0n

n

k



=

  
  
  

 and  ( ) ( ) 
0

1 ,
n k

n

s n k


−

=

−  obey the same 

recurrence relation and share the same initial conditions. 

We use the equivalence of the recurrence relations to conclude that 

( ) ( )1 ,
n kn

k
s n k

− 
= − 

 

,  nonnegative integers n  and k . 

Def (1). (Stirling numbers of the first kind) 

Stirling numbers of the first kind, ( ),s n k , are the coefficients in the 

expansion  

( ) ( ) ( )
0 0

1 ,
n n

n k k k

n
k k

n
s n k x x

k
x

−

= =

 
= − =  

 
  , for 1,2,...n =      (5) 

where( )
n

x is the falling factorial: ( )
0

1x =  and 

( )( ) ( )1 2 ... 1 !( ) :n x x x x n n
x

x
n

= − − − + =
 
 
 

. 

For example: 

( ) ( )( ) 2 3 2 3

3

3 3 3
1 2 2 3

1 2 3
x x x x x x x x xx

     
= − − = − + = − +     

     
. 

http://en.wikipedia.org/wiki/Falling_factorial
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From formula (5), we have 

              ( ) 1 2
...

1 2 1

n n

n

n n n
x x x x

n
x −     

= + + + +     
−     

, 

( ) 1 1 2 2
...

1 2 2 1

n n n

n

n n n n
x x x x x x

n n
x + −       

= + + + + +       
− −       

, 

            ( ) 1 2
...

1 2 1

n n

n

n n n
n nx n x n x n x

n
x −     

= + + + +     
−     

. 

Thus, subtracting corresponding members of the last two equations 

( ) ( ) 1

0 1

n
n k

n
k

n n
x n x n x

k k
x +

=

    
− = + −    

−    
 , taking 0

1

n 
= 

− 
 

                            
1

0 1

n
k

k

n n
n x

k k

+

=

    
= −    

−    
 ,          taking 0

1

n

n

 
= 

+ 
. 

But ( ) ( )( ) ( )( ) ( ) ( )
1

1 2 ... 1
n n

x x x x n x n x nx x
+
= − − − + − = − , and from (5) 

( ) ( ) ( )
1 1

1

1
0 0

1
1 1,

n n
n k k k

n
k k

n
s n k x x

k
x

+ +
+ −

+
= =

+ 
= − + =  

 
  . 

Consequently, the Stirling numbers obey the recurrence relation 

(3) with the initial conditions 
0

0
n

n
=

 
 
 

 and 
0

0
1

=
 
 
 

 where 
0n

  is the  

Kronecker delta. 

Example.  ( ) ( ) ( )
5 4 3

4 3x x x+ +  

                        ( ) ( ) ( )( )5 4 3
10 4 1 35 4 6 3 1x x x = + − + + + − +   

http://en.wikipedia.org/wiki/Kronecker_delta
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                               ( ) ( ) ( ) ( )2
50 4 11 3 3 24 4 6 3 2x x   + − + + − + + − +      

                        5 4 3 2
6 14 15 6x x x x x= − + − + . 

Stirling & Pascal Matrices 

Def (2). The Stirling matrix of the second kind ( )( )
1 ,

,n n i j n
S i j

 
=S  

and the Stirling matrix of the first kind ( )( )
1 ,

,n n i j n
s i j

 
=s , are 

defined, respectively, by 

( )
( ), , if 1

,
0, otherwise

n

S i j j i n
S i j

   
= 


 and  ( )
( ), , if 1

,
0, otherwise

n

s i j j i n
s i j

   
= 


, 

where ( ),s i j  is the element in the th
i  row and th

j  column: 

( ) ( ) ( ) ( ), 1, 1 1 1,s i j s i j i s i j= − − − − − . 

For a non-negative integer n , the Stirling matrix of the first kind  

( )( ),n S i j=S  for 0,1,2,...,i n=  and 0,1,2,...,j i=  satisfies            

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )

( )

0

0

1

1

2

0,0 0 0 0

1,0 1,1 0 0

2,0 2,1 2,2 0

,0 ,1 , 1 , n

n

xs x

s s xx

s s s x

s n s n s n n s n n xx

   
   
   
    =
   
   
   −     

,   (1) 

and the Stirling matrix of the second kind  ( )( ),n S i j=S  for 

0,1,2,...,i n=  and 0,1,2,...,j i=  satisfies 
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( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )

( )

0

0

1

1

2

0,0 0 0 0

1,0 1,1 0 0

2,0 2,1 2,2 0

,0 ,1 , 1 , n

n

xS x

S S x x

S S S x

S n S n S n n S n n x x

    
    
    
    =
    
    
    −    

. (2) 

For example, for 5n =  

( )( )5 1 , 5

1 0 0 0 0

1 1 0 0 0

, 1 3 1 0 0

1 7 6 1 0

1 15 25 10 1

n i j
S i j

 

 
 
 
 = =
 
 
 
 

S , and 

   ( )( )5 1 , 5

1 0 0 0 0

1 1 0 0 0

, 2 3 1 0 0

6 11 6 1 0

24 50 35 10 1

n i j
s i j

 

 
 
−

 
 = = −
 
− − 
 − − 

s . 

In other words, the Stirling matrices of the first and second kinds, 

ns  and nS  are inverse to each other, i.e., 

1

n n n n n

−
=  =S s I S s , 

where nI  is the n n  identity matrix. 

Def (3) (Pascal type matrices)  

The Pascal type matrices ( )( )
1 ,

,
i j n

p i j
 

=P , ( )( )
0 ,

,
i j n

p i j
 

=P , and 
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( )( )
0 ,

,
i j n

p i j
 

=P  are ( ) ( )1 1n n+  +  matrices which are defined with 

the binomial coefficients by (the lower triangular array): 

( )

1
, if 1

, 1

0, otherwise

i
j i

p i j j

 − 
  

= − 



, ( )
, if 1

,

0, otherwise

i
j i

p i j j

 
  

=  



, and 

             ( )
, if 1

, 1

0, otherwise

i
j i

p i j j

 
  

= − 



. 

The matrix P is the Pascal matrix, and P  is the Pascal 1- eliminated 

matrix which is obtained from the Pascal matrix by deleting its 

first row and column, while and P  is the “reverse” of P . 

It is easy to check that, 1−
=P JPJ , and 1−

=P JPJ , where

( )( )1
diag 1, 1, , 1

n+
= − −J . 

Let =P JPJ  we have 1 1− −
= =P P P PP  and 1 1 1 1− − − −

= = =P JP J P P PP . 

Lemma (2). Let ( )diag 1,2, ,n=Λ  be a diagonal matrix, then 

the Pascal type matrix P  can be factorized into the products of the 

Stirling matrices  
n n=P S Λs .  

Using the following Pascal type matrix 

( )
,

( 1) , if ,
- 1

0, otherwise

i j

i j

i
i j

i j

−
  
−   

= +  



P  

Define the matrix Λ  of the eigenvalues of the matrix P , in the case 
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 1 5j i   , then 

1 0 0 0 0

1 2 0 0 0

1 3 3 0 0

1 4 6 4 0

1 5 10 10 5

 
 
−
 
 = −
 
− − 
 − − 

P , and 

1 0 0 0 0

0 2 0 0 0

0 0 3 0 0

0 0 0 4 0

0 0 0 0 5

 
 
 
 =
 
 
 
 

Λ . 

Thus, 
n n n n= → =PS S Λ P S Λs , or 1 1

n n

− −
=P S Λ s , with 

1 1

n n

− −
=S P s Λ   and 1 1

n n

− −
=s ΛS P  

Therefore, 

1 1
2 2

1 1 1 1
6 2 3

1 1 1
4 2 4

1 1 1 1
30 3 2 5

1 0 0 0 0

0 0 0

0 0

0 0

0

−

 
 
 
 =
 
 
 − 

P . 

 


