

⋔⊾

Example (1) . Using the first step-decomposition theorem (1) given in the previous Lecture # 7. Let $\{X_n, n=0,1,...\}$ be a MC with TPM $\mathbf{M} = (p_{ij}),$ on the state space $SS = \{0,1\}$. we can easily establish the following: $=(p_{ij})$, on the state space $SS = \{0,1\}$. we callowing:
 $f_{00}^{(1)} = Pr(T_{00} = 1) = Pr(X_1 = 0 | X_0 = 0) = p_{00}$,

 $f_{00}^{(1)} = Pr(T_{00} = 1) = Pr(X_1 = 0 | X_0 = 0)$, $(T_{00} = n)$ $\{0\}$ $f_{00}^{(1)} = Pr(T_{00} = 1) = Pr(X_1 = 0 | X_0 = 0) = p_{00},$
 $f_{00}^{(n)} = Pr(T_{00} = n) = \sum_{k=0}^{n} p_{0k} f_{k0}^{(n-1)} = p_{01} f_{10}^{(n-1)} = p_{01} p_{11} f_{10}^{(n-2)}$ $\begin{split} f_{00}^{(0)} = \text{Pr}\bigl(T_{00} = 1\bigr) = \text{Pr}\bigl(X_{1} = 0\bigl|X_{0} = 0\bigr) = p_{00}\,,\ f_{00}^{(n)} = \text{Pr}\bigl(T_{00} = n\bigr) = \sum_{k \in SS - \{0\}} p_{0k} f_{k0}^{(n-1)} = p_{01} f_{10}^{(n-1)} = p_{01} p_{11} f_{10}^{(n-1)}\,. \end{split}$ $\begin{split} &f_{00}^{(1)} = \Pr \bigl(\textit{\textbf{T}}_{00} = 1 \bigr) = \Pr \bigl(\textit{\textbf{X}}_{1} = 0 \bigl| \textit{\textbf{X}}_{0} = 0 \bigr) = \textit{\textbf{p}}_{00}, \ &\text{and} \$ $\frac{1}{k}$
k f_k Sollowing:
 $f_{00}^{(1)} = Pr(T_{00} = 1) = Pr(X_1 = 0 | X_0 = 0) = p_{00},$
 $f_{00}^{(n)} = Pr(T_{00} = n) = \sum_{k \in SS - \{0\}} p_{0k} f_{k0}^{(n-1)} = p_{01} f_{10}^{(n-1)} = p_{01} p_{11} f_{10}^{(n-2)}$ $= ... = p_{01} (p_{11})^{n-2}$ $\sum_{k \in SS - \{0\}}^{n} p_{01}(p_{11})^{n-2} p_{10}, n \ge 2$ − $= ... = p_{01}(p_{11})^{n-2} p_{10}, n \ge 2,$ Similarity, $({\,{}_{{P}_{00}}\,})'$ $P_{11}^{(n)} = \begin{cases} p_{11}, \\ p_{10} (p_{00})^{n-2} p_{01}. \end{cases}$ $p_{01}(p_{11})^{n-2} p_{10}, n$
, $n=1$ $n = 1$
 $n \ge 2$ *n n* $p_{01} = p_{01} (p_{11})^{n-2} p_1$
 p_{11} , n *f* p_{11} , n
 $p_{10} (p_{00})^{n-2} p_{01}$, n − $\int p_{11}$, $n=$ $=\left\{$ $\left(p_{10} (p_{00})^{n-2} p_{01}, n \geq 0 \right)$, $f_{01}^{(n)} = (p_{00})^{n-1}$ $P_{01}^{(n)} = (p_{00})$ p_{01} $f_{01}^{(n)} = (p_{00})^{n-1} p_{01}$, and $f_{10}^{(n)} = (p_{11})^n$ $(n) - (n)^{n-1}$ $p_{10}^{(n)} = (p_{11})$ p_{10} $f_{10}^{(n)} = (p_{11})^{n-1} p_{10}$, for $n \ge 1$.

Bernoulli Trials:

 Consider the tossing of an unfair coin with success given by {head = s } with probability p and failure given by {tail = f } with probability q, and $p+q=1$. The sample space is $S_1 = \{s, f\}$. If the coin is tossed <u>twice</u>, then the sample space $S_2 = \{ss, sf, fs, ff\}$ is an ordered set from the Cartesian product $S_1 \times S_1$. The cardinality of S_2 is $2^2 = 4$. The probability of two successes is p^2 and two failures is q^2 . If we toss the coin *n* times, then the resulting sample space is $S_n = S_1 \times S_1 \times ... \times S_1$ and the cardinality of S_n is 2^n . The probability of *n* successes is p^n .

Def. (Bernoulli trials)

Bernoulli trials are repeated functionally independent trials with only two events s and f for each trial. The trials are also statistically independent with the two events *s* and *f* in each trial having probabilities p and $q=1-p$, respectively. These are called independent identically distributed (iid) trials.

Def. (Bernoulli process)

If X_n is a random variable denotes the number of successes in the trial *n*, The stochastic process $\{X_n, n=1,2,...\}$ is called Bernoulli process with probability of success $p(0 \le p \le 1)$, if it satisfies:

1- The random variables X_1, X_2, \cdots are independent

2- The event $\{X_{n} = 1\}$ denotes to the fail in the trial number *n*, while the event $\{X_{n}=0\}$ denotes to the success in the trial *n*, i.e., denotes to the success in

1 for success s in the nth trial

$$
X_n = \begin{cases} 1 & \text{for success } s \text{ in the } n^{\text{th}} \text{trial} \\ 0 & \text{for failure } f \text{ in the } n^{\text{th}} \text{trial} \end{cases}
$$

with probabilities $Pr(X_n = 1) = p$, and $Pr(X_n = 0) = q = 1 - p \forall n = 1, 2$, In the Bernoulli process the parameter set is $T = \{1, 2, ...\}$ and the state space is $SS = \{0,1\}$ the two are discrete.

The statistics of Bernoulli process Mean: ace is $SS = \{0,1\}$ the two are discrete.

tistics of Bernoulli process
 $E[X_n] = \mu_{X_n} = 1 \cdot Pr(X_n = 1) + 0 \cdot Pr(X_n = 0) = p$ Second moment: $E|X_n^2| = \mu_{V^2} = 1^2 \cdot Pr(X_n = 1) + 0^2 \cdot Pr(X_n = 0)$ **Pr**($X_n = 1$) + 0.Pr($X_n = 0$) = *p*
 $\mu_{X_n^2} = 1^2$.Pr($X_n = 1$) + 0².Pr($X_n = 0$ E $\frac{\text{Bernoulli process}}{P_n} = 1. \Pr(X_n = 1) + 0. \Pr(X_n = 0) = p$
 $E[X_n^2] = \mu_{X_n^2} = 1^2. \Pr(X_n = 1) + 0^2. \Pr(X_n = 0) = p$ Variance: $Var(X_n) = E[X_n^2] - (E[X_n])^2 = p - p^2 = p(1-p)$ $Z_{X_n} = 1 \cdot \Pr(X_n = 1) + 0 \cdot \Pr(X_n = 0) = p$
 $E\left[X_n^2\right] = \mu_{X_n^2} = 1^2 \cdot \Pr(X_n = 1) + 0^2 \cdot \Pr(X_n = 0) = p$
 $Var(X_n) = E\left[X_n^2\right] - \left(E[X_n]\right)^2 = p - p^2 = p(1-p)$ Probability generating function $(z) = E | z^{x_n} | = z^0 \times Pr(X_n = 0) + z^1 \times Pr(X_n = 1)$ <u>n $\frac{1}{2}$ $\frac{1}{2}$

Autocorrelation function:

$$
\begin{aligned}\n\text{cocorrelation function:} \\
R_X(m,n) &= E[X_m X_n] = \begin{cases} 1^2 \cdot p + 0^2 \cdot (1-p) = p, \ m = n \\ E[X_m] E[X_n] = p^2, \ m \neq n \end{cases} \\
\text{co-covariance:} \\
ov(X_m, X_n) &= R_X(m,n) - E[X_m] E[X_n] = \begin{cases} p - p^2 = p(1-p), \ m = n \\ n^2 - n^2 = 0, \ m \neq n \end{cases}\n\end{aligned}
$$

Auto-covariance:

$$
R_X(m,n) = E[X_m X_n] = \begin{cases} 1^2 \cdot p + 0^2 \cdot (1-p) = p, & m = n \\ E[X_m]E[X_n] = p^2, & m \neq n \end{cases}
$$
\nAuto-covariance:

\n
$$
Cov(X_m, X_n) = R_X(m,n) - E[X_m]E[X_n] = \begin{cases} p - p^2 = p(1-p), & m = n \\ p^2 - p^2 = 0, & m \neq n \end{cases}
$$
\nNormalized auto-covariance:

\n
$$
\rho_X(m,n) = \begin{cases} 1, & m = n \\ 0, & m \neq n \end{cases}
$$

Since the mean is independent of time *n* and the autocorrelation depends only on the time difference $m - n$, the process X_n is stationary.

Def. (Binomial process)

If $\{X_n, n=1,2,...\}$ represents Bernoulli process with probability of success, $p(0 \le p \le 1)$, and N_n represents the number of successes during the first trials until the completion of the trial *n*:
 $N = \begin{cases} X_1 + X_2 + \cdots + X_n, n \ge 1 \end{cases}$

$$
N_n = \begin{cases} X_1 + X_2 + \dots + X_n, \, n \ge 1 \\ 0, \, n = 0 \end{cases}
$$

where the increments $\{X_i\}$ form a family of independent $\{0,1\}$ -

valued random variables.

The process $\{N_n, n=1,2,...\}$ is called a <u>binomial</u> process.

The statistics of the binomial process

Mean: Since the probability of each success is p , the mean value of N_n can be obtained using the linearity of the expectation operator:

$$
\mu_{N_n} = E[N_n] = E\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n E[X_i] = nE[X_i] = np
$$

amount: The second moment of N, can be given by

Second moment: The second moment of N_n can be given by

$$
\mu_{N_n} = E[N_n] = E\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n E[X_i] = nE[X_i] = np
$$

Second moment: The second moment of N_n can be given by

$$
E[N_n^2] = E\left[\left(\sum_{i=1}^n X_i\right)^2\right] = \sum_{i=1}^n E[X_i^2] + \sum_{i \neq j} \sum_{j} E[X_i] E[X_j] = np + n(n-1)p^2
$$

Variance:

$$
Var(N_n) = E[N_n^2] - (E[N_n])^2 = np + n(n-1)p^2 - n^2p^2 = np(1-p).
$$

Probability generating function

Variance:

Variance:
\n
$$
Var(N_n) = E[N_n^2] - (E[N_n])^2 = np + n(n-1)p^2 - n^2p^2 = np(1-p).
$$
\nProbability generating function
\n
$$
G_{N_n}(z) = E[z^{N_n}] = E[z^{X_1 + X_2 + ... X_n}] = E[z^{X_1}]E[z^{X_2}]...E[z^{X_n}] = (q + zp)^n
$$
\nAutocorrelation:

Probability generating function
 $G_{N_n}(z) = E[z^{N_n}] = E[z^{x_1 + x_2 + ... x_n}] = E[z^{x_1}]E[z^{x_2}]...E[z^{x_n}] = (q + zp)^n$ $\begin{aligned} \mathcal{L}^{m} &\bigg[E\big[Z^{-1} \big] E\big[Z^{-1} \big] ... E \big] \ &\bigg[\sum_{i=1}^{n} \sum_{i=1}^{m} X_{i} X_{i} \big] \end{aligned}$

$$
G_{_{N_n}}(z) = E[z^{_{N_n}}] = E[z^{_{X_1+X_2+\ldots X_n}}] = E[z^{_{X_1}}]E[z^{_{X_2}}]...E[z^{_{X_n}}] = (q+zp)^n
$$

\nAutocorrelation:
\n
$$
R_N(m,n) = E[N_mN_n] = E\left[\sum_{j=1}^n \sum_{i=1}^m X_i X_j\right]
$$
\n
$$
= E\left[\sum_{i=1}^m X_i^2\right] + \sum_{j=1}^m \sum_{\substack{i=1 \ i \neq j}}^m E[X_i X_j] + \sum_{j=1}^{n-m} \sum_{\substack{i=1 \ i \neq j}}^m E[X_i X_j]
$$
\n
$$
= mp + m(m-1)p^2 + m(n-m)p^2 = \begin{cases} mp(1-p) + mnp^2 & \text{for } m \le n \\ np(1-p) + mnp^2 & \text{for } n \le m \end{cases}
$$
\n
$$
= p(1-p) \min(m,n) + mnp^2, \ m,n > 0.
$$

\nAuto-covariance:
\n
$$
Cov(N_m, N_n) = R_N(m,n) - E[N_m]E[N_n] = p(1-p) \min(m,n), \ m,n > 0.
$$

\nBinomial process is a Markov chain

Auto-covariance:

$$
Cov(N_m, N_n) = R_N(m, n) - E[N_m]E[N_n] = p(1-p)\min(m, n), m, n > 0.
$$

Binomial process is a Markov chain

If the random variable N_n denotes the number of successes during the number *n* of Bernoulli's trials, where the probability of success in any one trial is p, the sequence of $\{N_n, n=1,2,...\}$ is a MC, the probability of transition in one step is

$$
p_{ij} = Pr(N_{n+1} = j | N_n = i) = Pr(X_{n+1} = j - i) = \begin{cases} p, & j = i + 1, \\ 1 - p, & j = i, \\ 0, & \text{otherwise} \end{cases}
$$

and the transition probabilities after *n*-step is given by\n
$$
p_{ij}^{(n)} = \binom{n}{j-i} p^{j-i} q^{n-j+1}, \ j = i, \dots, n+i
$$

If N_n is the number of successes in the first *n* Bernoulli trials, with probability of a success in any one trial is p , then the sequence of random variables $\{N_n, n=1,2,...\}$ is a MC, with $N_0 = 0$, since the process $\{N_n\}$ has the discrete parameter set $T = \{1, 2, ...\}$ and the discrete state space $SS = \{0,1,2,...\}$, and satisfies the Markov property: for all $i, k, i_1, ..., i_{n-1} \in SS$ we have

Markov property: for all
$$
i, k, i_1, ..., i_{n-1} \in SS
$$
 we have
\n
$$
Pr(N_{n+1} = k | N_n = i, N_{n-1} = i_{n-1}, ..., N_1 = i_1)
$$
\n
$$
= \frac{Pr(N_{n+1} = k, N_n = i, N_{n-1} = i_{n-1}, ..., N_1 = i_1)}{Pr(N_n = i, N_{n-1} = i_{n-1}, ..., N_1 = i_1)}
$$
\n
$$
= \frac{Pr(N_{n+1} - N_n = k - i, N_n - N_{n-1} = i - i_{n-1}, ..., N_2 - N_1 = i_2 - i_1, N_1 = i_1)}{Pr(N_n - N_{n-1} = i - i_{n-1}, ..., N_2 - N_1 = i_2 - i_1, N_1 = i_1)}
$$
\n
$$
= \frac{Pr(X_{n+1} = k - i, X_n = i - i_{n-1}, ..., X_1 = i_2 - i_1, N_1 = i_1)}{Pr(X_n = i - i_{n-1}, X_{n-1} = i_{n-1} - i_{n-2}, ..., X_1 = i_2 - i_1, N_1 = i_1)}
$$
\n
$$
= Pr(X_{n+1} = k - i | X_n = i - i_{n-1}, ..., X_1 = i_2 - i_1, N_1 = i_1)
$$
\n
$$
= Pr(X_{n+1} = k - i | N_n = i, N_{n-1} = i_{n-1}, ..., N_1 = i_1)
$$
\n
$$
= Pr(X_{n+1} = k - i | N_n = i, N_{n-1} = i_{n-1}, ..., N_1 = i_1)
$$
\n
$$
= Pr(X_{n+1} = k - i | \sum_{i=1}^{n} X_i = i, \sum_{i=1}^{n-1} X_i = i_{n-1}, ..., N_1 = i_1)
$$

$$
= \Pr(X_{n+1} = k - i) = \Pr(X_{n+1} = k - i) \Pr\left(\sum_{i=1}^{n} X_i = i\right) / \Pr\left(\sum_{i=1}^{n} X_i = i\right)
$$

= $\Pr(X_{n+1} = k - i, \sum_{i=1}^{n} X_i = i) / \Pr\left(\sum_{i=1}^{n} X_i = i\right) = \Pr(X_{n+1} = k - i | \sum_{i=1}^{n} X_i = i\right)$
= $\Pr(X_{n+1} = k - i | N_n = i) = \Pr(N_{n+1} = k | N_n = i),$

where the third equality is due to the independence of X_{n+1} and the other *n* random variables. Thus, the future of a process depends only on the most recent past outcome. variables. Thus, the future of a process de
t recent past outcome.
 $Pr(N_{n+1} = k | N_n = i, N_{n-1} = i_{n-1},..., N_1 = i_1)$ depe

The probability depends on the value of N_n and is independent of the values of $N_1, N_2, ..., N_{n-1}$, since $N_{n+1} = N_n + X_{n+1}$, i.e.,

$$
\Pr(N_{n+1} = j | N_n = i) = p, \quad \Pr(N_{n+1} = i | N_n = i) = 1 - p.
$$

So, N_{n+1} depends only on N_n , and both the state space and the parameter set are discrete, then the process $\{N_n, n=1,2,...\}$ is an example of MC, on the state space $SS = \{0,1,2,...\}$, with parameter set $T = \{1, 2, ...\}$ and one-step transition probability: ss {*N_n*, *n* = 1, 2, ...} is an
0,1,2, ...}, with parameter
bability:
 $\begin{cases} p, & j = i + 1, \\ 1 - p, & j = i, \end{cases}$

example of MC, on the state space
$$
SS = \{0,1,2,...\}
$$
, with parameter
set $T = \{1,2,...\}$ and one-step transition probability:
 $p_{ij} = Pr(N_{n+1} = j | N_n = i) = Pr(X_{n+1} = j - i) = \begin{cases} p, & j = i+1, \\ 1-p, & j = i, \\ 0, & \text{otherwise} \end{cases}$
The TPM is $\mathbf{M} = (p_{ij})_{i,j \in SS} = 2 \begin{bmatrix} 1 & 0 & 1-p & p & 0 & \cdots \\ 0 & 0 & 1-p & p & 0 & \cdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & 0 \end{bmatrix}$.

In addition, the MC ${N_n}_{n \in \mathbb{N}}$ is <u>time homogeneous</u> if the random sequence ${X_n}_{n \geq 1}$ is identically distributed.

Lemma (1) (Probability distribution)

The number N_n of successes in the first *n* Bernoulli trials, with probability of a success in any one trial is p , is a **binomial** random variable: probability of a success in any one trial is p ,
variable:
 $Pr(k$ successes in any sequence in *n* trials)

= Pr(N_n = k) =
$$
\binom{n}{k} p^k q^{n-k}
$$
, for $p+q=1$, $k = 0,1,...,n$. (i)

Proof. The state probability at time $n+1$ can be determined from the relation: $p_k^{(n+1)} = \sum p_i^{(n)}$ $p_k^{(n+1)} = \sum p_i^{(n)} p_{ik}$ *i* $p_k^{(n+1)} = \sum p_i^{(n)} p_k$ $p_i^{(n)} = \sum p_i^{(n)} p_{ik}$, i.e., e relation: $p_k^{(n+1)} = \sum_i p_i^{(n)} p_{ik}$, i.e.,
 $p_k^{(n+1)} = \Pr(N_{n+1} = k) = \sum_i \Pr(N_n = i) \Pr(N_{n+1} = k | N_n = i),$

$$
p_k^{(n+1)} = \Pr(N_{n+1} = k) = \sum_i \Pr(N_n = i) \Pr(N_{n+1} = k | N_n = i),
$$

since $(N_{n+1} = k | N_n = i) = Pr(X_{n+1} = N_{n+1} - N_n = k - i)$, $P = Pr(N_{n+1} = k) = \sum_{i} Pr(N_n = i) Pr(N_{n+1} = k | N_n = i),$
 $Pr(N_{n+1} = k | N_n = i) = Pr(X_{n+1} = N_{n+1} - N_n = k - i) = \begin{cases} q, & i = k \\ p, & i = k - 1 \\ 0, & \text{otherwise} \end{cases}$ $q, i = k$
p, $i = k - 1$
0, otherwise $I_{n+1} = k | N_n = i$ $= Pr(X_{n+1} = N_{n+1} - N_n)$ *i*),
q, *i* = *k*
p, *i* = *k* $Pr(N_{n+1} = k) = \sum_{i} Pr(N_{n} = i) Pr(N_{n+1} = k | N_{n} = i),$
 $N_{n+1} = k | N_{n} = i) = Pr(X_{n+1} = N_{n+1} - N_{n} = k - i) = \begin{cases} q, & i = k \\ p, & i = k \\ 0, & \text{other} \end{cases}$ $\int q, i =$ \vert $\begin{aligned} N_{n+1} &= k \big) = \sum_{i} \Pr(N_n = i) \Pr(N_{n+1} = k \big| N_n = i \big), \\ &= k \big| N_n = i \big) = \Pr(X_{n+1} = N_{n+1} - N_n = k - i) = \begin{cases} q, & i = k \\ p, & i = k - 1 \end{cases} \end{aligned}$ \lfloor ,

the following recurrence relation follows

the following recurrence relation follows
\n
$$
p_k^{(n+1)} = \Pr(N_{n+1} = k) = p \Pr(N_n = k - 1) + q \Pr(N_n = k).
$$
 (ii)

Using the mathematical induction with the recurrence relation (ii), we will prove formula (i):

For $n = 0$, formula (i) is true, since $N_0 = 0$.

Assume that it is also true for $n = m$ and all k. That is

$$
\text{Pr}(N_m = k) = \binom{m}{k} p^k q^{m-k}, \text{ for } k = 0, 1, \dots, m. \quad \text{(iii)}
$$

We will prove it is true for $n = m+1$, i.e.,
 $Pr(N = k) = {m+1 \choose m} p^k a^{m+1-k}$

Pr(
$$
N_{m+1} = k
$$
) = $\binom{m+1}{k} p^k q^{m+1-k}$. (iv)

Putting formula (iii) in the recurrence relation (ii), we get formula (iii) in the recurrence relation (ii), we get
Pr $(N_{m+1} = k) = p \Pr(N_m = k - 1) + q \Pr(N_m = k)$

L.H.S.
$$
Pr(N_{m+1} = k) = p Pr(N_m = k - 1) + q Pr(N_m = k)
$$

\n
$$
= p {m \choose k-1} p^{k-1} q^{m-k+1} + q {m \choose k} p^k q^{m-k}
$$
\n
$$
= {m \choose k-1} p^k q^{m-k+1} + {m \choose k} p^k q^{m-k+1} = \left[{m \choose k-1} + {m \choose k} \right] p^k q^{m-k+1}
$$
\n
$$
= {m+1 \choose k} p^k q^{m-k+1} = R.H.S., \text{ for } 0 < k \le m+1
$$
\nwhen $k = 0$, we get $Pr(N_{m+1} = 0) = p \times 0 + q Pr(N_m = 0) = q \times q^m = q^{m+1}$

when $k = 0$, we get $Pr(N_{m+1} = 0) = p \times 0 + q Pr(N_m = 0) = q \times q^m = q^{m+1}$ + Therefore, the probability of k successes in *n* trials is given by a binomial distribution: $Pr(N_n = k) = {n \choose k} p^k q^{n-k}$ *n* $N_n = k$ = $\binom{n}{k} p^k q^k$ cesses in $\binom{n}{r}$ _{n^kaⁿ⁻} κ successes in
= k) = $\binom{n}{k} p^k q^{n-k}$, for $k = 0, 1, \ldots, n$.

binomial distribution:
$$
Pr(N_n = k) = {n \choose k} p^k q^{n-k}
$$
, for $k = 0, 1, ..., n$.
\n**The** n^{th} **-step transition probabilities**
\n
$$
p_{ij}^{(n)} = Pr(N_{m+n} = j | N_m = i) = Pr\left(\sum_{k=1}^{m+n} X_k = j | \sum_{k=1}^{m} X_k = i\right)
$$
\n
$$
= Pr\left(\sum_{k=m+1}^{m+n} X_k = j - i\right) = Pr(N_n = j - i)
$$

n

$$
= \begin{cases} {n \choose j-i} p^{j-i} q^{n-(j-i)}, \ j = i, i+1, \dots, i+n; \ p+q = 1 \\ 0, \qquad \qquad j < i \end{cases}
$$

The *th n* -**step TPM**

$$
p^{th}\text{-step TPM}
$$
\n
$$
\mathbf{M}^{(n)} = (p_{ij}^{(n)})_{i,j \in S^S} = \begin{bmatrix}\n q^n & npq^{n-1} & n \choose 2 & p^2q^{n-2} & n \choose 3 & p^3q^{n-3} & \cdots & n \choose j & p^jq^{n-j} & \cdots \\
 0 & q^n & npq^{n-1} & nq^{n-1} & nq^{n-2} & \cdots & n \choose j-1 & p^{j-1}q^{n-(j-1)} & \cdots \\
 0 & 0 & q^n & npq^{n-1} & \cdots & \cdots & \vdots \\
 0 & 0 & q^n & \cdots & \cdots & \cdots & \vdots \\
 0 & 0 & \cdots & \cdots & \cdots & 0 & \cdots\n\end{bmatrix}.
$$

 Unlike the Bernoulli process, the mean of the binomial process is dependent on time *n* and the autocorrelation function is dependent on both *m* , *n* and hence is a **non-stationary** process.

Note that the increment $N_{n+m} - N_m$ represents the number of rement $N_{n+m} - N_m$ 1

the trials $m+1, m$
 \sum_{m+n}^{m+n} \sum_{m}^{m} \sum_{m}^{m} \sum_{m}^{m+n} ement $N_{n+m} - N_m$ represe

a the trials $m+1, m+2, ...$
 $\sum_{n=m}^{m} N_n = N_m$

is dependent on time *n* and the autocorrelation function is
dependent on both *m*, *n* and hence is a **non-stationary** process.
Note that the increment
$$
N_{n+m} - N_m
$$
 represents the number of
successes through the trials $m+1, m+2, ..., m+n$:

$$
N_{m+n} - N_m = \sum_{k=1}^{m+n} X_k - \sum_{k=1}^{m} X_k = \sum_{k=m+1}^{m+n} X_k = X_{m+1} + X_{m+2} + \dots + X_{m+n}
$$

It is also a sum of *n* independent random variables that have the same distribution of the Bernoulli distribution, from which we conclude that also a sum of *n* independent random variables that have
e distribution of the Bernoulli distribution, from which w
clude that
 $Pr(N_{m+n} - N_m = j) = Pr(N_n = j) = {n \choose j} p^j (1-p)^{n-j}, j = 0,1,...,$ ution, irc $\int^j (1-p)^{n-j}$ o a sum of *n* independent random variables that have the stribution of the Bernoulli distribution, from which we de that $N_{m+n} - N_m = j$ = $Pr(N_n = j) = {n \choose j} p^j (1-p)^{n-j}$, $j = 0,1,...,n$ ndom variables th
listribution, from
 $\binom{n}{i} p^j (1-p)^{n-j}$, um of *n* independent random variables that have the
ution of the Bernoulli distribution, from which we
at
 $-N_m = j$) = Pr($N_n = j$) = $\binom{n}{j} p^j (1-p)^{n-j}$, $j = 0,1,...,n$.

clude that
Pr
$$
(N_{m+n} - N_m = j)
$$
 = Pr $(N_n = j)$ = ${n \choose j} p^j (1-p)^{n-j}$, $j = 0,1,...,n$.

It is the element number *j* in the binomial expansion $(p+q)^n$ and it does not depend on *m* where $q = 1-p$, for example

$$
Pr(N_6 = 3) = {6 \choose 3} p^3 (1-p)^{6-3} = 20 p^3 (1-p)^3
$$

Pr(N₁₅ - N₁₀ = 4) = Pr(N₅ = 4) = ${5 \choose 4} p^4 (1-p)^{5-4} = 5 p^4 (1-p)$.
Lemma (2): The conditional probability of the number of

Lemma (2): The conditional probability of the number of **Lemma** (2): The conditional probability of the number of successes, $N_{n+m} - N_m$ during number of trials $m+1, m+2, ..., m+n$, is independent of the number of previous successes until trial number
 m "which is $N_1, N_2, ..., N_m$ ", for $k = 0, 1, ..., n$
 $Pr(N_{m+n} - N_m = k | N_m = k_m, N_{m-1} = k_{m-1}, ..., N_1 = k_1)$

$$
m \text{ "which is } N_1, N_2, \dots, N_m \text{ ", for } k = 0, 1, \dots, n
$$
\n
$$
\Pr\left(N_{m+n} - N_m = k \, \big| N_m = k_m, N_{m-1} = k_{m-1}, \dots, N_1 = k_1\right)
$$
\n
$$
= \Pr\left(N_{m+n} - N_m = k\right) = \Pr\left(N_n = k\right) = \binom{n}{k} p^k \left(1 - p\right)^{n-k}.
$$

Proof. Using the definition of a random variable *Nn* , we find that the random variables $N_1, N_2, ..., N_m$ are exact determined in terms of X_1, X_2, \ldots, X_m and vice versa, i.e., are exact determined in terms of $\{N_1, N_2, ..., N_m\} \Leftrightarrow \{X_1, X_2, ..., X_m\}$: Tables $N_1, N_2, ..., N_m$ are exact determined

nd vice versa, i.e., $\{N_1, N_2, ..., N_m\} \Leftrightarrow \{X_1, X_2, ..., X_n\}$
 $X_1 = N_1, X_2 = N_2 - N_1, ..., X_m = N_m - N_{m-1}.$ \cdots , \cdots .

Thus, ..., X_m and vice versa, i.e., { $N_1, N_2, ..., N_m$ } ⇔
 $X_1 = N_1, X_2 = N_2 - N_1, ..., X_m = N_m - N_m$

Pr($N_{m+n} - N_m = k | N_m = k_m, N_{m-1} = k_{m-1}, ..., N_1 = k_1$) nd vice versa, i.e., $\{N_1, N_2, ..., N_m\} \Leftrightarrow \{X_1, X_2$
 $X_1 = N_1, X_2 = N_2 - N_1, ..., X_m = N_m - N_{m-1}$.
 $-N_m = k | N_m = k_m, N_{m-1} = k_{m-1}, ..., N_1 = k_1\}$ $X_1 = N_1, X_2 = N_2 - N_1, ..., X_m = N_m - N_{m-1}.$

Thus, $Pr(N_{m+n} - N_m = k | N_m = k_m, N_{m-1} = k_{m-1}, ..., N_1 = k_1)$
 $= Pr(N_{m+n} - N_m = k | X_m = x_m, X_{m-1} = x_{m-1}, ..., X_1 = x_1),$ $=\Pr(N_{m+n}-N_m=k|X_m=x_m,X_{m-1}=x_{m-1},...,X_1=x_1),$ $(\text{with } x_i = k_i - k_{i-1}, \text{ for } i = 1, 2, \dots)$ Thus, $Pr(N_{m+n} - N_m = k | N_m = k_m, N_{m-1} = k_{m-1}, ..., N_1 = k_1)$
= $Pr(N_{m+n} - N_m = k | X_m = x_m, X_{m-1} = x_{m-1}, ..., X_1 = x_1),$
(with $x_i = k_i - k_{i-1}$, for $i = 1, 2, ...$)
= $Pr(X_{m+1} + X_{m+2} + ... + X_{m+n} = k | X_m = x_m, X_{m-1} = x_{m-1}, ..., X_1 = x_1)$
In other meaning $N_{m+1} = N_{m+1$ In other meaning $N_{m+n} - N_m = X_{m+1} + X_{m+2} + ... + X_{m+n}$ and $X_{m+2} + ... + X_{m+n} = k \Big| X_m = x_m, X_{m-1} = x$
 $N_{m+n} - N_m = X_{m+1} + X_{m+2} + ... + X_{m+n}$ an

In other meaning
$$
N_{m+n} - N_m = X_{m+1} + X_{m+2} + ... + X_{m+n}
$$
 and
\n $\{X_{m+1}, X_{m+2},..., X_{m+n}\}$ are independent of $\{X_m, X_{m-1},..., X_1\}$. Thus
\n $Pr(N_{m+n} - N_m = k | X_m = x_m, X_{m-1} = x_{m-1},..., X_1 = x_1)$
\n $= Pr(N_{m+n} - N_m = k) = Pr(N_n = k) = {n \choose k} p^k (1-p)^{n-k}, k = 0,1,...,n$

Corollary (1). If $n_1 > \cdots > n_n > n_1 > n_0 = 0$ are positive integers, then **Corollary** (1). If $n_j > \cdots > n_2 > n_1 > n_0 = 0$ are positive integers, then the random variables (increments) $N_{n_j} - N_{n_{j-1}}, ..., N_{n_2} - N_{n_1}, N_{n_1} - N_{n_0}$ are independent.

Example (1). Find the following
- the JPMF Pr(
$$
N_{13} = 8, N_7 = 5, N_5 = 4
$$
)

- the expected value $E[N_sN_s]$.

- the expected value
$$
E[N_sN_s]
$$
.
\nSolution. Since the following two events are equivalent
\n
$$
\{N_{13} = 8, N_7 = 5, N_5 = 4\} \text{ and } \{N_5 = 4, N_7 - N_5 = 1, N_{13} - N_7 = 3\},\
$$
\nthen $Pr(N_{13} = 8, N_7 = 5, N_5 = 4) = Pr(N_5 = 4, N_7 - N_5 = 1, N_{13} - N_7 = 3)$
\n
$$
= Pr(N_{13} - N_7 = 3|N_5 = 4, N_7 - N_5 = 1)Pr(N_5 = 4, N_7 - N_5 = 1)
$$
\n
$$
= Pr(N_{13} - N_7 = 3)Pr(N_5 = 4, N_7 - N_5 = 1)
$$
\n(since $N_{13} - N_7$ is independent of $N_1, N_2, ..., N_7$)
\n
$$
= Pr(N_{13} - N_7 = 3)Pr(N_7 - N_5 = 1|N_5 = 4)Pr(N_5 = 4)
$$
\n
$$
= Pr(N_{13} - N_7 = 3)Pr(N_7 - N_5 = 1)Pr(N_5 = 4)
$$
\n(since $N_7 - N_5$ is independent of $N_1, N_2, ..., N_5$)
\n
$$
= Pr(N_6 = 3)Pr(N_2 = 1)Pr(N_5 = 4)
$$
\n
$$
= {6 \choose 3} p^3 q^3 {2 \choose 1} pq \begin{pmatrix} 5 \\ 4 \end{pmatrix} p^4 q = 20p^8 q^8.
$$
\nTo calculate $E[N_5N_8]$, we write N_8 as $N_8 = N_5 + (N_8 - N_5)$. Then
\n
$$
E[N_5N_8] = E[N_5(N_5 + (N_8 - N_5))] = E[N_5^2 + N_5(N_8 - N_5)]
$$
\n(since $(N_8 - N_5)$ and N_5 are independent)
\n
$$
= E[N_5^2] + E[N_5]E[N_8 - N_5] = E[N_5^2] + E[N_5]E[N_3]
$$
\n
$$
= (5pq + 25p^2) + (5p)(3p) = 5p(q + 8
$$

Since each X_i is independent of X_j , $j \neq i$, we conclude that the process N_n is an independent increment process. The independent increments are <u>stationary</u> because
 $Pr(N_n - N_m = k) = {n-m \choose k} p^k (1-p)^{(n-m)^{-k}}$, $n > m$ increments are stationary because $\frac{1}{2}$ increase $n-m$ t increment process

cause
 $\binom{n-m}{r} p^k (1-p)^{(n-m)}$ independent increment process. The independent
ationary because
 $-N_m = k$) = $\binom{n-m}{k} p^k (1-p)^{(n-m)^{-k}}$, $n > m$

are stationary because
Pr(N_n - N_m = k) =
$$
\binom{n-m}{k} p^{k} (1-p)^{(n-m)^{-k}}
$$
, $n > m$

is dependent only on the count difference $(n-m)$ and not on individual counts *n* and *m*.

Times of which the Successes of a Bernoulli Process Occur

Denote the times corresponding to the successes in the Bernoulli process by T_1, T_2, T_3, \cdots for example if Denote the times corresponding to the su
process by T_1 , T_2 , T_3 , \cdots for example if
 $X_1 = 0, X_2 = 1, X_3 = 0, X_4 = 1, X_5 = 1, \cdots$ then

then $T_1 = 2, T_2 = 4, T_3 = 5, \dots$.

Relations Between Times and Numbers of Successes

Assume that the success number *k* has occurred at or before the trial number *n*, this means that $T_n \leq n$. Then the number of successes in the first *n* trial should be at least *k* , meaning that $N_n \ge k$: If $T_k \le n$ then $N_n \ge k$ and the reverse is true, i.e., if $N_n \ge k$ then $T_k \leq n$.

Assume that $T_n = n$, this achieves the presence $k-1$ of successes in the first of the $n-1$ trails and the success of an event in the trial number *n*, meaning that $N_n = k - 1$ and $X_n = 1$. Conversely, if $N_{n-1} = k - 1$ and $X_n = 1$ then $T_n = n$.

We will place the previous two relationships as a corollary, and use them to infer the probability distribution of the time T_n with the knowledge of the probability distribution of N_n .

Corollary (1). For integer numbers $k = 1, 2, ...$ and $n \ge k$, we have

$$
T_k \le n \quad \text{iff} \quad N_n \ge k
$$
\n
$$
T_n = n \quad \text{iff} \quad N_{n-1} = k - 1 \quad \text{and} \quad X_n = 1
$$

Lemma (3). Let T_n be the time of the n^{th} success in a Bernoulli

process { X_n , $n = 0,1,...$ }. The sequence of random variables

{ T_n , $n = 0,1,...$ } is a MC, with transition probabilities
 $P_{ij} = Pr(T_n = j | T_{n-1} = i) = Pr(T_n - T_{n$ process { X_n , $n = 0,1,...$ }. The sequence of random variables
{ T_n , $n = 0,1,...$ } is a MC, with transition probabilities
 $p_{ij} = Pr(T_n = j | T_{n-1} = i) = Pr(T_n - T_{n-1} = j - i) = \begin{cases} pq^{j-i-1}, & j \ge i+1 \\ 0, & \text{otherwise} \end{cases}$ T_n , $n = 0, 1, ...$ }. The sequence of random va
{ T_n , $n = 0, 1, ...$ } is a MC, with transition probabilities
 $p_{ij} = Pr(T_n = j | T_{n-1} = i) = Pr(T_n - T_{n-1} = j - i) = \begin{cases} pq_0, & \text{if } j \neq j_0, \\ 0, & \text{if } j \neq j_0, \end{cases}$ *j i g*. Let T_n be the time of the n^m success in a Berno $\{X_n, n = 0, 1, ...\}$. The sequence of random variables $p, 1, ...\}$ is a MC, with transition probabilities
 $= Pr(T_n = j | T_{n-1} = i) = Pr(T_n - T_{n-1} = j - i) = \begin{cases} pq^{j-i-1}, & j \ge i \\ 0, & \text{other} \$ $-$ ⁻ⁱ⁻¹, $j ≥ i +$ ss in a Bernoulli

in variables

ties
 $\int pq^{j-i-1}$, $j \ge i+1$

0. otherwise

$$
p_{ij} = Pr(T_n = j | T_{n-1} = i) = Pr(T_n - T_{n-1} = j - i) = \begin{cases} pq^{j-i-1}, & j \ge i+1 \\ 0, & \text{otherwise} \end{cases}
$$

Here the state space is $SS = \{0, 1, 2, ...\}$, $T_0 = 0$, and the TPM of ${T_n, n = 0,1,2,...}$ is *p pq pq pq* $\begin{bmatrix} 0 & p & pq & pq^2 & pq^3 & \cdots \end{bmatrix}$

is
\n
$$
\mathbf{M} = (p_{ij})_{i,j} = \begin{bmatrix}\n0 & p & pq & pq^2 & pq^3 & \cdots \\
0 & 0 & p & pq & pq^2 & \cdots \\
0 & 0 & 0 & p & pq & \cdots \\
\vdots & & & 0 & p & \cdots \\
0 & & & & \ddots & \ddots\n\end{bmatrix}.
$$

The state probability at time *t* is given by
\n
$$
p_n^{(t)} = \Pr(T_n = t) = \binom{t-1}{n-1} p^n q^{t-n}, \text{ for } t = n, n+1,...
$$

with the initial distribution $p_0^{(0)}$ $p_0^{(0)} = 1$; and $p_1^{(0)} = p_2^{(0)} = ... = 0$.

The *n*-step transition probabilities of the $\{T_n, n = 0, 1, ...\}$ MC can be The *n*-step transition probabilities of the $\{T_n, n = 0, 1, ...\}$ for computed as $p_{ij}^{(n)} = Pr(T_{k+n} = j | T_k = i) = Pr(T_{k+n} - T_k = j - i)$ (*n* distribution $p_0 = 1$, and $p_1 = p_2 = ... = 0$.

insition probabilities of the $\{T_n, n = 0, 1, ...\}$ MC can $p_{ij}^{(n)} = Pr(T_{k+n} = j | T_k = i) = Pr(T_{k+n} - T_k = j - i)$

$$
= \Pr(T_{k+n} = j | T_k = i) = \Pr(T_{k+n} - T_k)
$$

$$
= \binom{j-i-1}{n-1} p^n q^{j-i-n}, \quad j \ge i+n.
$$

The *n*-step TPM of the $\{T_n, n = 0, 1, ...\}$ MC is

$$
u\text{-step TPM of the }\{T_n, n = 0, 1, ...\} \text{ MC is}
$$
\n
$$
\mathbf{M}^{(n)} = (p_{ij}^{(n)})_{i,j} = \begin{bmatrix}\n0 & \cdots & 0 & p^n & np^n q & \binom{n+1}{n-1} p^n q^2 & \binom{n+2}{n-1} p^n q^3 & \cdots \\
0 & 0 & p^n & np^n q & \binom{n+1}{n-1} p^n q^2 & \cdots \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 &
$$