8.5 HEBB NET

A simple learning rule for a neural net is Hebb rule which can be
formulated as follows.

Hebb learning rule

If two interconnected neurons fire at the same time, the weight associated
with their connection link should be increased.

A stronger form of learning is obtained if the weight is increased also
in the case when both neurons do not fire at the same time. We thus get

The extended Hebb rule

If two interconnected neurons fire or do not fire at the same time, the
weight associated with their connection link 1s increased.

A single-layer which is trained using the extended Hebb rule is called

a Hebb net. If we apply bipolar activations, a possible formulation to the
extended Hebb rule for a Hebb net is

w. (new) = w, (old)+ x;,y (8.5.1)

where x, is the activation of an input unit X,, y— the activation of an
output unit ¥ and w, 1S the weight associated with the connection link

between X, and Y. In order to include bias we add the connection link

between Y and an input unit B with constant activation 1, which is
associated with the weight b .

The right-hand side of Eq. (8.5.1) implies that should X, (or B) and
Y fire and not fire alternately, the associated weight must be decreased.

The simplest form of using Hebb learning rule is to pass once through the
training set and adjust the weights accordingly.

s Example 8.5.1 To obtain a separation line for the logic function
AND one should find w;, w, and b such that the truth table (Table 8.5.1).

m Table 8.5.1 Truth table for AND using bipolar activations.

X X, > 1
1 1 1
| 0
-1 1 0
-1 -1 0

will be obtained by a neural net. Consider the initial values
w, =w, =b =0 and denote

Aw, =w.(new)—w,(old)=xt, 1<i<?2
(8.5.2)
Ab =b(new)—b(old) =t

The four ‘extended patterns’, namely

x, = (1,1,1)

x, =(1,-1L1)
x, =(—-1LLI)
x, =(-1-11)

enter the neural net and w,, 1<i<2 and b are adjusted using Eq. (8.5.2).
The process is described in Table 8.5.2.

Table 8.5.2 Hebb rule applied to AND, using bipolar activations.

Input Target Weight Changes Weights
x ox, 1 t Aw, Aw, Ab w, W, b
1 1 1 1 1 1 1 1 1 1
1 -1 1 -1 -1 1 -1 0 2 0
-1 1 1 -1 1 -1 -1 1 1 -1
-1 -1 1 -1 1 1 -1 2 2 -2

The final separation line is 2x; +2x,-2=0 (Fig. 8.5.1). The decision

boundaries suggested by the system at the interim stages are illustrated in
Figs. (8.5.2) through (8.5.4). In this case the fourth training pattern is not
needed and the decision boundary after the first three training patterns is
already final.

\XZ
— +

X1

2X1 +2xz-2=\

m Figure8.5.1 Getting a separation line for AND.

X2

X1

AN

X1+X2+1=0

Decision boundary after first training pattern.

X2

2x2=0 X1

Decision boundary after second training pattern.

\XZ
- +

X1+X2-1=0

X1

N\

Decision boundary after third training pattern.

The Hebb learning rule is limited and does not always provide a linear
separator even if there is one. In the next example, the use of binary
activations prevents the neural net from learning some of the patterns.

m Example 8.5.2 Consider a neural net which is assembled to model
AND, using binary activations. The associated truth table is given in
Table 8.3.1 and by applying Hebb rule and the initial conditions

w, =w, =b =0 we obtain

m Table 8.5.2 Hebb rule applied unsuccessfully to AND using
binary activations.

Input Target Weight Changes Weights
X, X, 1 t Aw, Aw, Ab W W, b
1 1 1 1 1 1 1 1 1 1
1 0 1 0 0 0 0 1 1 1
0 1 1 0 0 0 0 1 1 1
0 0 1 0 0 0 0 1 1 1

Clearly, if the target ¢ is 0, no learning occurs.

In the next example the Hebb net is applied to classify letters - represented
by pixel matrices.

m Example 8.5.3 Consider a pattern classification problem where each
pattern 1S either the letter ‘M’ or the letter ‘L’ represented by 5x35 pixel
matrices (Fig. 8.5.5).

X - - - X X

X X - X X X

X . X . X X

X - - - X X

X : . y X X X X X X
Pattern ‘M’ Pattern ‘L’

m Figure 8.5.5 Representation of ‘M’ and ‘L’ by pixels.

An arbitrary pattern is represented by a 25-component vector. The pixels
‘x’ and ‘. are represented by the values 1 and —1 respectively and each
vector is obtained by concatenating the rows of the corresponding pixel
matrix starting at the top. The Hebb net consists of 25 input units and an
output unit. There is no need to include here a bias unit.

The patterns ‘M’ and ‘L’ are therefore

‘M’=(1—1—1—11,11—111,1—11—11,1-1--1—11,1—1—1—11)T
‘=04 -1-1-1-1,1-1-1-1-1,1-1-1-1-1,1~-1-1-1-1, 11111)T

and the desired outputs are 1 for ‘M’ and —1 for ‘L’. If we start with
w,=0,1<i<25 and feed the system with the pattern ‘M’ and r=1, we

obtain that the weight change vector Aw, = (Aw,,Aw,,,...,Aw,) equals

to ‘M’. As we start with homogeneous initial conditions, the new weight
vector is also ‘M’. Since ¢ =—1 (no response) for the training pattern ‘L’,
the second weight change vector is ‘—L.” and the final weight vector is

Wf =*M’-‘L’=(00002,02022,00202,00002,0 -2 -2 —20)T

The net input into the output unit when ‘M’ 1s fed into the system 1s
Wf ‘M’=20>0 and the response 1s 1. If ‘L’ enters the system, the net

input is W, ‘L’=-20<0 and the response is —1 as desired. If an

incoming pattern, given as a 25-component vector, includes noise or some
wrong measurements 1t may still be classified as ‘M’ or ‘L’ provided that
the noise and the errors in measurements are significantly small. For
example, the pattern in Fig. 8.5.6 1s similar to ‘M’. Its representation as a
25-component vector 18

X X X X

X X
X - . . X
X - . . X

m Figure 8.5.6 A pattern which resembles M.
‘M=1-1-1-1-1,11 =111, -1 =11 -11,1 =1 =1 =11,1 -1 -1 —ll)T

and W; ‘M’=16, 1.e. the pattern definitely produces a positive response

and therefore classified in the M-class.

We now return and discuss the limitations of the Hebb net. In
Example 8.5.2, using the Hebb rule with binary activations, prevented the
learning of three out of four training patterns. Consequently, the Hebb
neural net could not provide a linear separator for the AND logic function,
although such a separator exists (Example 8.5.1). However, even if the
Hebb net learns all the patterns and even if a linear separator exists, there
is no guarantee that the final weights will indeed provide an appropriate
separator.

8.6 THE PERCEPTRON

The limitations of the Hebb rule are not shared by another learning
procedure which was also implemented in the earliest neural nets - the
perceptron. Furthermore, sufficient conditions for the convergence of its
iterative process exist.

The basic perceptron consists of three layers of neurons: a layer of

sensory units S,, 1 <i<m; alayer of associative units X,, 1<i<n and a
layer of response units Y;, 1< j<k. The case of a single response unit is

illustrated in Fig. 8.6.1. Each of the associative units i1s randomly
connected to the sensory units with connection links over which the
weights are prefixed. The sensory units transfer the stimuli from the
measurement devices to the associative units and since no learning occurs
at this stage, we may observe the associative units as input units and just
consider the second and third layers (Fig. 8.6.2). We also assume a bias

associative unit B. The activations x,, 1<i<n of the associative units

are binary or bipolar, while that of Y 1s 1,0or—1. The net input of the
response unit Y is

(8.6.1)

Figure 8.6.1 A perceptron model.

Figure 8.6.2 Associative and response units.

and its activation 1s defined by

’

1, y_in>0

fly_in)=¢ 0 , —-0<Ly_in<0 (8.6.2)
-1, y_in<-6

\

Thus, the perceptron’s output is 1 if the response unit’s activation exceeds
a given threshold 6. If the net input falls within a band of width @
around zero, the activation is set to zero. Otherwise it equals —1. The
target is always +1 or —1. If it is 1, an error occurs whenever f(y_in) is
either —1 or O and the weights associated with the connection links

between the associative units and the response unit, will be adjusted by the
perceptron learning rule.

The purpose of introducing the threshold 8 is to be able to decisively
distinguish between a positive and a negative response. This threshold
determines a neutral zone between the two choices, and cannot be
included in the bias b. Indeed, a positive response occurs if

S wx+b—0>0 (8.6.3)
i=l

while a negative one yields
zn: wx, +b+6 <0 (8.6.4)
i=]

Clearly, we cannot replace b and @ by a single parameter (b—8) in Eq.
(8.6.3) since in Eq. (8.6.4) that single parameter should be b+6#b—-0.

For each pattern we calculate the response unit’s activation f(y_in).
If it 1s not equal to the target ¢ the weights are adjusted by

w,(new) =w.(old) + oux, (8.6.5)

where o is a correction coefficient between 0 and 1 which can be
observed as the learning rate of the perceptor. If, however, f(y_in)=t

the weights are unchanged and the next pattern 1s tested. Each iteration
consists of a complete sweep over the set of training patterns. The process

stops if throughout an iteration no adjusting of w., 1<i <n occurs, i.e. if
all the training patterns provide the desired targets.

Algorithm 8.6.1.

(An algorithm for a basic perceptron: PERC)

Input: m — the number of training patterns.
n— the number of associative units.
6 — the perceptron threshold.
o.— the perceptron learning rate.

{x,}i-1— The activations of the i-th pattern, 1<i<m.
t., 1< i< m~The correct targets of the training patterns.
W, 1 < j < n— The initial weights.

b, — The initial bias.

Output: w;,1< j<n— the final weights.
b —the final bias.

Step 1. Setit=0and wo=w,, 1< j<n, b, =b,
Step 2. Set ichange =0 and for 1<i<m do Steps 3-5.

Step 3. Calculate

y_in= ijox + b,

}.._

Step 4. Set
1, y_in>6
y={ 0 , -0<y_in<8
-1 , y_in<-0

Step 5. Updating the weights and bias:

Step 6.

It y+#t set

ichange =1
w,=w,,+arx, 1< j<n
b=b,+ot

and then w, «<—w,, 1< j<n and b, < b.

Otherwise continue.

If W, = wjo, 1< j<n; b:b; and ichange =0, output
‘learning is successfully completed’, it (no. of iterations)
and stop. Otherwise, if w,=w,, 1<j<n; b=b, and
ichange =1, output ‘learning cannot be completed for all

training patterns’ and stop; otherwise set it «— it +1;
by, by «— by Wiy, Wy ¢ w,;, 1< j<n and go to Step 2.

m Example 8.6.1 Consider the logic function OR where the input is
binary and the targets are bipolar, i.e.

Choose 8=0.3, a =1 and w, =w,, =b, =0. The first iteration provides

Table 8.6.1 which has a ‘Net’ column for y_in and an ‘Output’ column
for f(y_in).

m Table 8.6.1 The first perceptron iteration for OR.

Input Net Output Target Weight Changes Weights
X, x 1 Aw, Aw, Ab W, W,
1 1 1 0 0 1 1 1 1 1 1
1 0 1 2 1] 0 0 0 1 1
0] 1 2 1 1 0 0 0 1 1
0 0 1 1 1 -1 0 0 -1 1 1

2 s = O

At the end of this iteration or cycle we get the weights w, =w, =1 and the

bias »=0 which yield a temporary decision band between the straight
lines x;, +x,—03=0 and x, +x,+0.3=0 (Fig. 8.6.3). In order for the

decision band to provide correct results for all of the training patterns, the
patterns with positive targets must fall on the positive side of the band, i.e.

must satisfy x, +x,—0.3>0, while the patterns with negative targets

hould fall on the negative side, i.e. satisfy x,+x,+03<0. The

S

threshold is therefore a parameter which indicates the desired extent of the
decision band as a separating zone between the two classes of patterns. In
this example the training 1nput pattern (0,0) falls within the decision band
and the process i1s not terminated. This can be also concluded by
comparing the initial and final weights and bias:

(w;, w,,b) = (1,1,0) # (0,0,0) = (wyy, Way, By

X2
1,1
. L0
AN
\\ N
N \\
\\ ——\ {I +X2-0.3=0 N X1
AN
AN
x2+0.3=0
X1+X2+ \\\ \\

The results of the next cycles are given below.

Cycle

S O = =R

2:

%)
1

0
1
0

Cycle 3:

o O = =

o = O

S Sy w—y

O e

Net

O NN

Lo T e T

Output

o = O

o O O O

Aw, Ab
0 0
0 0
0 0
0 -1
Aw, Ab
0 0
0 1
0 0
0 -1

NN N — =

w, b
1 0
1 0
1 0
1 -1
w, b
1 -1
1 0
1 0
1 -1

Cycle 4

Aw.,
0

Aw,

Target

Net Output

Xy 1

X

0

1

1

|

Aw, Ab W

Target Aw,

Output

X, 1 Net

Cycle 5
X

1 -1

0 0

Since all the training patterns produce outputs which are identical to
their corresponding targets the process ends successfully after five cycles.
The final weights are w, =w, =2 and the final bias is b=—-1. The

training patterns and the final separation band are illustrated in Fig. 8.6.4.

X2

%\ + X1

m Figure 8.6.4 A final separation band for OR.

N\

We will next prove a convergence theorem for the perceptron
learning rule.

Consider a set X of input training vectors x,, 1<i<m with
associated target values t., 1<i<m respectively, such that z is either 1
or —1, and with an activation function y = f(y_in) such that

1 , y_in>0
0 , —-0<y_in<6
-1 , y_in<-0

Let the new weights be updated (if y #¢) by
w(new) =w(old)+otx

If y = t the weights remain the same.

