m Theorem 8.6.1
If a vector w* for which
fxl-w*=t, , 1<i<m (8.6.6)

exists, the perceptron learning rule will converge to a weight vector w **
which satisfies

f(xT-w*® =t | 1<i<m (8.6.7)

in a finite number of iterations.

The finite weight vector which provides correct responds, is generally
not unique.

Proof.

Define

T ={x,1t,=1} , T ={x1t,=-1} (8.6.8)

For the sake of simplicity we assume =1, 8 =0. Consequently, the
existence of w* guarantees (0 =0)

xT-w*>0 , xeT"
(8.6.9)
xT-w*<0 , xeT"
Let T=T" U(-T"). Then
x"w*>0 , xeT (8.6.10)

If an arbitrary response is incorrect (i.e., <0) for the current weight vector
w, the updating is performed (o =1) by

w(new)=w(old)+ x (8.6.11)
where x is the training vector which provided the incorrect response.

Let w, denote an initial weight vector and denote by y, the first

training vector with an incorrect response, 1.¢., it 1s the first x,, 1<i<m

for which y, -w, <0 (if y, does not exist the process terminates and

w**=w.). Toupdate w, we define
W, =Wyt ¥,
and take y, as the first training vector which satisfies y, -w, <0. If y,

does not exist the process terminates and w **=w,. To update w, we
choose

W), =Wty =w,T ¥, +tJY

At every step of the process we have
k-1
W, =W, t 2, (8.6.12)
i=0

and we will show that k£ cannot increase indefinitely. Let

a=minlx; -w¥] (8.6.13)

1<€i<m

Clearly a >0 and consequently by Eq. (8.6.12)

k-1
T T T T
w,-wE=w, -w*+Y y. -w >w, -w*+ka (8.6.14)
i=0

If w,-w*+ka is always negative, k is bounded and the process for
obtaining w** is finite. Assume k in contrast to be such that

w, -w*+ka is already positive. By combining Eq. (8.6.14) and the
Cauchy-Schartz inequality we get

(Wo - W *+ka)® < (w, - w*)* <|w,| 2||w *||2

which leads to

>

W, ||2 > Ak’ for some A >0. However, for arbitrary &

1.€.,

_ T
We =Wt Y 5 Y Wi <0

and therefore,
ol =+ el < ol + i
This implies
o <o g ol 1essE Gsio
and we finally obtain
ol <ol + o (8.617)
where
b=max|x| , 1<i<m (8.6.18)

Obviously, Egs. (8.6.15) and (8.6.17) lead to contradiction if k increases
indefinitely. They also provide an upper bound for k£ given by

(w -w* +ka)’

v <

If we assume (without a real loss of generality) w, =0 we get

< |wo| +kb (8.6.19)

b

: (8.6.20)
d

which concludes the proof. w,

Clearly, the bound of Eq. (8.6.20) is not exactly practical since w*
(and therefore, @) is unknown. If & #1 we obtain a similar proof and for
w, =0, Eq. (8.6.20) still holds. The validity of the proof for 8 >0 is also

straightforward. The restriction that the number of training vectors m 1is
finite can be lifted if 0< p<|x|<g <o forall xe X. If X includes

training vectors whose norms are very large or very small, the perceptron
learning rule may require an extensive number of iterations to converge.

The perceptron learning rule performs better than the Hebb rule as can
be seen from the next example.

m Example 8.6.2 Consider the 3-D four training patterns and targets

given by
X, X, X, t
- -1 | 1
-1 -1 -1
-1 1 -1
-1 | | -1

Here the Hebb rule, starting with w, =0, 1<i<3; b =0, yields the final
weights w,=-2, w,=w,=0, b=-2 which do not provide an

appropriate linear separator. If x” -w >0 is considered a positive target

and x'-w<0- a negative one, the first three patterns are properly
classified but not the fourth.

If we treat the same problem using the perceptron learning rule with
80=03, a=1 we obtain after two iterations w,=w,=-2, w,=0,

b=-2.

8.7 ADALINE

The ADALINE (ADAptive Linear NEuron) usually uses bipolar
activations and targets. It is a single neuron which receives its input from
several input units including one (a bias unit) which provides a constant
signal 1. The ADALINE’s architecture is shown in Fig. 8.7.1.

m Figure 8.7.1 The architecture of a single ADALINE

If several ADALINESs receive their inputs from the same units, they may
create a single-layer net. However, if the outputs of several ADALINESs
are the inputs for others, we obtain a multilayer net-MADALINE (Many
ADAptive Linear NEurons). The training of the ADALINE is done using
the delta rule and its general design is given next.

Algorithm 8.7.1

(An algorithm for a single ADALINE: ADAL)

Input:

m — the number of training patterns.
n — the number of associate units.
o —the ADALINE learning rate.

{)cU P the activations of the i—th pattern,
1<i<m
t, 1<i<m - the correct targets of the training
patterns.
Wy, 1< j<n —the initial weights.
b, — the initial bias.

€ — a given tolerance for determining convergence.
N — maximum number of iterations allowed.

Output: W, 1 < j <£n —the final weights.

b — the final bias.
it —number of iterations.

Step 1. Setit:O,wj():wjo,léan;b;:bo.
Step 2. For i =1,...,m do Steps 3-4.
Step 3. Compute the net input to the output unit:

n
. * *
j=!

Step 4.

Step 5.

Step 6.

Update the weights and bias using the delta rule:

w,=wto(t,—y_in)x,, 1<j<n

b=b, + ot — y_in)

*

andset w,w, ,1<j<n ; b, b

Calculate FE : the maximum weight (or bias) change in
Steps 2-4; it =it +1

n

If E <& output {Wj},-=1,

b, it and stop; otherwise if it =N

output ‘maximum number of iterations exceeded’ and stop;
otherwise go to Step 2.

If the targets are bipolar we apply in Step 3 an activation function which
receives y_in and provides a step function:

.. |1, y_in=20
f(y_ln)_{_l, y_in<0

which replaces y_in in Step 4.

The delta rule applied in Algorithm 8.7.1 is a consequence of trying to
reduce the squared error of an arbitrary training pattern. This error is

E =(t-y_in)" where t is the desired output. To minimize it we apply

the method of steepest descent, i.e. following the opposite direction of the
error’s gradient. The error 1s obviously a function of the current weights
W, 1< j < and.the bias b, and since we have

oE

5W_j:—2(t—y_in)xj (8.7.1)

we obtain

w;(new) = wj(old) +o(t — y_in)x, (8.7.2)

where ¢ 1s some prefixed learning rate.

m Example 8.7.1 Consider the OR function using bipolar patterns and

targets:
X X2 t
1 1 1
1 -1 1
—1 1 1
-1 -1 —1

The total squared error for given weights and bias w,, w,, b is
E=w+w,+b—1)"+(w —w,+b-1)
+(—w, +w, +b—1)* + (—w, — w, + b+ 1)

and its minimum is attained by choosing w, =w, =b=0.5 i.e., the linear
separator 1s 0.5x;, +0.5x, +0.5=0

8.8 BACKPROPAGATION NEURAL NET AND ITS
APPLICATIONS

The limitations of single-layer neural networks inspired the interest in
multilayer neural networks and the discovery of a general method for
training such networks — the backpropagation method. It consists of

applying the steepest descent method to minimize the error produced by
the neural net’s output.

The architecture of a multilayer neural network with a single hidden
layer is illustrated in Fig. 8.8.1. It has input units {X.}_, (and a bias);

hidden units {Z .}, (and a bias); output units {¥,};_;. The weights

associated with the connections between the input and the hidden units are
v,; 0<i<n, 1< j<I[and those between the hidden and the output units

are w ; 0</j<I, 1<k<m .

=4

~

'

”,@
=

4

Xn

Z

X,

al net with a single hidden layer.

Figure 8.8.1 A multilayer neur

Backpropagation Method

The training of a network using backpropagation consists of three stages:
(a) feedforward the input training pattern throughout the neural network;
(b) backpropagation analysis of the error; (¢) updating the weights.
Without loss of generality, we will consider and discuss the single hidden

layer case of Fig. 8.8.1.
The feedforward is performed as follows: each input unit receives a
signal and transfers it via its connections and weights to all the hidden

units. Each Z; computes its activation and transfers its own signal to all
the output units. Finally, each Y, computes its activation y . The set

{y, }r, is the network response (or output) of the given input.

The backpropagation analysis of the error is the training stage. Each
y, 1s compared with its associated target value. This provides the error

for that pattern with the unit ¥, . Next, a quantity of J, which divides this
error back to the units of the previous layer, is computed. In the case of
Fig. 8.8.1, these are the hidden units. After obtaining {0,} ;., we compute
similar quantities {5;} ﬂz, which are associated with {Z.} ljz, :

Once determined, the numbers {0, } |, , {6; }’j=l are used to adjust all
the weights simultaneously. The weight w, (from Z; to 1,) is adjusted
using &, and the activation z, while v, (from X, to Z,) is adjusted by]
and the activation Xx, .

The backpropagation procedure is performed on all the training
patterns and if the maximum weight adjustment is less than a given
tolerance, the process is completed. The standard training algorithm for
the backpropagation neural network with a single hidden layer is given
next.

Algorithm 8.8.1 (Training by backpropagation).

Input: A set of M training patterns xP =(x?) ... x)y 7,
1< p<Mwith targets 1) = (t,(P),..., t,Ef))T, 1< p<M;
initial weights vg’); 0<i<n, 1<j<I and

wﬁ), 0< /<, 1£k<m; a tolerance £>0; a maximum

allowed number of iterations N and a learning rate o .

Output: Final weights for the neural network - v, and w), .

Step 1. Set V. —vt(lo), 0<i<n, 1< and Wy _ng)’

0<j<l 1Lk <m. Setit=0 (current number of iterations).

Step2. For 1< p<Mdo Steps 3-4 (feedforward) and Steps 5-7
(backpropagation of the error).

Step 3.

Step 4.

For each hidden unit Z,, 1< j <[calculate the total weighted

input from input layer:

h
z(_”)injzvoj +, Vv, x!.(”), 1<j<l

i=1

and use the activation function f{x), to get the output signals
obtained from the hidden units:

2P =f (z2Pin), 1< j<I

For each output unit Y, , 1<k <m calculate the total weighted
input from the hidden layer:

i
(P, _ (r)
]:

and use the activation function f (x), to get the output signals

yIEP) = f(y(f)ink); lgk Sm

Step 5. Calculate the error terms (steepest descent method).

57 = -y (YW in,), 1<k <m
the weight correction terms

Aw, = aSk(”)zj; 1<j<I, 1<k<m

and the bias correction terms

Aw,, =ad.” , 1<k <m

Step 6. For each hidden unit sum its delta inputs from the output layer:

5Pin, =2 5w, , 1< j<I
k=

and its backward error term
5 =8Pin, f(z_in;), 1< j<I
Then, obtain the weight correction terms
Av, =ad x5 1<i<n, 1< j<I
and the bias correction term

———

Avy, =08V, 1< j<I

Step 7. Update the weights of the neural net:

v, < v, +Ay,; 0<i<n, 1<

[] ,

Wy € Wy +Aw, ; 0<j<I, 1<k<m

Jk’

Step8. Setit<it+1 and

i (1@ — y(Py?

1 k=l

l|
pMz

=
i

If i#<Nande>e go to Step 2; otherwise, if

it<Nande<eg,outputv,,w, ,it and stop; else if it>N

ij
output ‘no convergence’ and stop.

Mathematical Background

The backpropagation procedure is based on a popular minimization
process—the steepest descent method. The learning rules of algorithm

8.8.1 are obtained as follows. For arbitrary input pattern x =(x, ..., xn)T

and target 1=, ..., t)', the error to be minimized is (the factor V2 is
chosen for convenience)

1 m
E=—-3 (tk ™ Vi)2 (8.8.1)
2 k=1
where
v, = fly_in,) (8.8.2)
and
!
Y _in =Wy, + 3, Waz, (8.8.3)

j=

Let I, J, K denote fixed values in the sets {O, I,..., n}, {O, 1,..., l},{l, 2,..., m}

respectively. To apply the steepest descent method we obtain the
derivatives

JE 0 s . yOly_i
d :_(t _}’K) 2/ SN _(IK_yK)f (y—mK) (}’ mK)
Wk aWJK an’K
=ty —y.)f (y_ing)z, =—6,2, (8.8.4)

and

L o -n) 2o=-f) (i) =)

av,, k=1 av,, k=1 aVU
:_i 0, a(y mk) Z O Wy ——— %,
k=1 v, vy,

=—25 w f (z_in,)x, ==& _in, f (z_in,) x,

—_§ x, (8.8.5)

and update the weights using the correction terms

Aw, =—0 9E . o<j<i, 1<k<m
ow,
(8.8.6)
J X
Aqu—a—a--»- , 0<i<n , 1<
dv

where o is some prefixed learning rate.

Activation Function

Due to its role in the design of a neural network the activation function f{(x)
is expected to be monotonic nondecreasing and to belong to C'(— oo,).
Usually, it is also expected to saturate, i.e.

lim f (x)=A <

X-=ye0

(8.8.7)
lim f (x)=B> —o

X—>—co

Finally, from computational point of view, it is desirable to apply an
activation such that f(x)and f'(x) are easily computed. Typical

activation functions are the previously defined binary and the bipolar
sigmoid functions and tanh(x).

Initialization

Choosing appropriate initial values for the various weights may determine
the speed of the learning process and whether we reach a global or local
minimum of the error (a typical problem when applying the steepest
descent method). Since updating the weights involve values of activations
and their derivatives, it is preferable that these values should not vanish.
Consequently it is usually advisable to choose initial weights which are not
too large. For example, one could choose the initial weights randomly
within the range (— 0.5, 0.5).

A modification to this trivial choice 1s the Nguyen-Widrow
initialization. The iritial weights and biases from the hidden layer to the
output layer are chosen randomly, say between —0.5 to 0.5. As to the
initial weights over the connections between the input and the hidden
layers, they are determined using the following procedure. Define a scale
factor

B=0741 (8.8.8)

where n and / are the numbers of the units at the input and hidden layers
respectively. We first choose v, randomly between —0.5 and 0.5 and

denote them by v Letv denote the vector of the weights from the

input units to the hidden unit Z i 1.e. (.0) —---(v1 e ,v,(;.))) . We now
0)

update v,) and use

o B

ey
V;

IA
=
IA
~
AN

as the final initial weights between X, and Z,. The initial biases v,; are

taken randomly between — 3 and 3 .

The Nguyen-Widrow initialization procedure is based on the activation
function tanh(x) but is also effective for the similarly behaving bipolar

sigmoid function.

s Example 8.8.1 Consider a neural network with two input units, three
hidden units and a single output unit, i.e. n =2,/ =3 and m = 1. This
network is supposed to operate as the ‘XOR’ function. Four training
patterns which are 2-D vectors (n = 2) are the inputs. The outputs are four
scalars (m = 1). If a binary representation is considered, the patterns are

1,1)", (1,0),(0,1),(0,0)", with targets O, 1, 1, O respectively and the
activation function is the binary sigmoid. For a bipolar representation the
input patterns are (1,1)',(1,—1),(-=1,1)", (=1,-1) with targets —1, 1, 1,
—1 respectively and the activation function is the bipolar sigmoid.

The initial weights chosen randomly between —0.5 and 0.5 are:

Ve, = 0396, v, =-0.030, v,;=-0.401

v, =—0.066, v,=-0.046, v,= 0414

vy, =—0.017, v,,= 0220, v,;= 0.23]
and

wy, =0.118, w,, =—0.173, w, =0.204, w,, =—0.271

The training of the network continues until the total squared error is
sufficiently small, i.e.

For a tolerance €=0.05 and learning rate v =0.1 we obtain the following
results:

(a) Binary representation: 15342 iterations are needed for convergence
and the final outputs are:

yW=0112, y¥=0870, y¥=0.899, y* =0.102

(b) Bipolar representation: 823 iterations are needed for convergence and
the final outputs are:

yV=-0.883, y?=0910, y¥=0.895, y*) =-0.869

= Example 8.8.2 Consider the previous example with
£€=0.0land x=0.15. Applying standard (ST) and Nguyen-Widrow

(NW) initializations provide the following results.

(a) Binary representation:

Type of Initialization No. of iterations
ST 12971
NW 6883

(b) Bipolar representation:
Type of Initialization No. of iterations
ST 1534

NW 1246

For fixed initial values of the weights and a given tolerance € >0, the

speed by which the backpropagation network trains itself, depends on the
learning-rate o .

In the next example we obtain the number of iterations needed for
convergence, 1{a), for the ‘XOR’ function. The weights are chosen

randomly.

= Example 8.8.3 Consider Example 8.8.1 (6=0.05). Fig. 8.8.2

illustrates the speed of convergence as a function of « in the case of
bipolar representation.

1700 I(CL)

1400

1100

T

1

800

) /
508.01 0.06 0.11 0.16 0.21

= Figure 8.8.2 I(a) for the ‘XOR’ function-bipolar representation.

A reasonable choice for ‘optimal’ « is between 0.1 and 0.15.

Updating Weights Using Momentum

In order to speed up the convergence of a backpropagation network, it is
sometimes recommended to derive the weights at step (#+1), using not
only the weights at step ¢ but also those at step (#—1). The updating is
performed by

Av; (t +)=0d x, + 1L A v, (t)

(8.8.9)
Aw, t+1)=ad,z, +puAw, (t)

where

Av, ()= v; () v; (t-1)
(8.8.10)
Aw, (t):ij (t)_wjk (t ~1)

and (, the momentum coefficient is between 0 and 1.

This modified updating may allow reasonably large weights adjustments
and reduces the likelihood to obtain a local minimum rather than a global
one while training the network.

Batch Updating

Sometimes it is more efficient to accumulate the weight adjustments for
several patterns and then perform a single adjustment using the average of
the various correction terms. A possible disadvantage is that this
procedure may have a smoothing effect on the correction terms and
consequently may lead to a local minimum.

Updating the Learning Rate

In many applications each weight may have its own learning rate.
Moreover, if the weight change is in the same direction for several steps,
its associated learning rate should be increased. On the other hand, if the

weight change sign alternates, the associated learning rate should be
decreased.

m Example 8.8.4 Consider Example 8.8.1 with bipolar representation.
Let £€=0.01 and ® =0.1. The standard implementation of Algorithm

8.8.1 converges after 2081 iterations. By using the momentum procedure
with ¢ =1 the number of iterations is reduced to 30.

